Когда собираешь какую либо электронную самоделку, то для ее проверки нужен блок питания. На рынке большое разнообразие готовых решений. Красиво оформлены, имеют много функций. Так же много kit-наборов для самостоятельного изготовления. Я уже не говорю про китайцев с их торговыми площадками. Покупал я на Алиэкспресс платы модулей понижающего преобразователя, вот на нем и решил сделать. Напряжение регулируется, тока хватает. Блок в основе имеет модуль из Китая, так же радиодетали которые были у меня в мастерской(давно лежали и ждали своего часа). Регулирует блок от 1.5 вольта и до максимума(все зависит от применяемого выпрямителя до платы регулировки.

Описание компонентов

Есть у меня трансформатор 17.9 Вольт и током 1.7Ампера. Он установлен в корпусе, значит подбирать последний не нужно. Обмотка довольно толстая, думаю и 2 Ампера потянет. Вместо трансформатора можно применить импульсный блок питания ноутбука, но тогда нужен еще и корпус для остальных компонентов.


Выпрямителем переменного тока, будет диодный мост, можно собрать и из четырех диодов. Сглаживать пульсации будет электролитический конденсатор, у меня 2200 микрофарад и рабочим напряжением 35 вольт. Применил б/у, был в наличии.


Регулировать выходное напряжение буду . Их на рынке большое разнообразие. Он обеспечивает хорошую стабилизацию и довольно надежен.


Для комфортной регулировки выходного напряжения буду применять регулировочный резистор на 4.7 кОм. На плате установлен 10 кОм, но у меня какой был, такой и поставлю. Резистор еще начала 90-х. При таком номинале, регулировка обеспечивается плавно. Так же подобрал ручку на него, тоже лохматых годов.


Индикатором выходного напряжения служит . У него три провода. Два провода питание вольтметра(красный и черный), а третий(синий) измеряющий. Можно соединить красный и синий вместе. Тогда вольтметр будет питаться от выходного напряжения блока, то есть загораться индикация от 4 вольт. Согласитесь не удобно, поэтому я его буду питать отдельно, об этом далее.


Для питания вольтметра я применю отечественную микросхему стабилизатора напряжения на 12 вольт. Тем самым обеспечу работу индикатора-вольтметра от минимума. Питается вольтметр через красный плюс и черный минус. Измерение осуществляется через черный минус и синий плюс выход блока.


Клеммы у меня отечественные. Имеют отверстия для штекеров типа «банан» и отверстия под зажим проводов. Похожие . Так же подобрал провода с наконечниками.

Сборка блока питания

Все собирается по простой зарисованной схеме.


Диодный мост нужно припаять к трансформатору. Я его выгнул для комфортной установки. На выход моста припаял конденсатор. Получилось не выйти за габариты по высоте.


Кренку питания вольтметра прикрутил к трансформатору. В принципе она не греется, и так она стоит на своем месте и никому не мешает.


На плате регулятора выпаял резистор и припаял два проводка под выносной резистор. Так же припаял провода под выходные клеммы.


На корпусе разметив отверстия под все, что будет на передней панели. Вырезал отверстия под вольтметр и одну клемму. Резистор и вторую клемму устанавливаю на стык коробки. При сборке коробки все зафиксируется сжатием обеих половинок.


Клемма и вольтметр установлены.


Так получилось установить вторую клемму и регулировочный резистор. Под ключ резистора сделал вырез.


Вырезаем окно под выключатель. Корпус собираем и закрываем. Осталось только распаять выключатель и регулируемый блок питания готов к применению.

Такой вот регулируемый блок питания получился. Данная конструкция простая и доступна для повторения каждому. Детали не являются редкими.
Всем удачи в изготовлении!

Сергей Никитин

Простой лабораторный блок питания.

Описанием этого простого лабораторного блока питания, я открываю цикл статей, в которых познакомлю Вас с простыми и надёжными в работе разработками (в основном различных источников питания и зарядных устройств), которые приходилось собирать по мере необходимости из подручных средств.
Для всех этих конструкций в основном использовались детали и части от списанной с эксплуатации старой оргтехники.

И так, понадобился как-то срочно блок питания с регулировкой выходного напряжения в пределах 30-40 вольт и током нагрузки в районе 5-ти ампер.

В наличии имелся трансформатор от бесперебойника UPS-500, в котором при соединении вторичных обмоток последовательно, получалось около 30-33 Вольт переменного напряжения. Это меня как раз устраивало, но осталось решить, по какой схеме собирать блок питания.

Если делать блок питания по классической схеме, то вся лишняя мощность при низком выходном напряжении будет выделяться на регулирующем транзисторе. Это мне не подходило, да и делать блок питания по предлагаемым схемам как то не захотелось, и ещё нужно было-бы для него искать детали.
По этому разработал схему под те детали, какие на данный момент у меня были в наличии.

За основу схемы взял ключевой стабилизатор, чтобы на греть в пустую окружающее пространство выделяемой мощностью на регулирующем транзисторе.
Здесь нет ШИМ-регулирования и частота включения ключевого транзистора, зависит только от тока нагрузки. Без нагрузки частота включения в районе одного герца и менее, зависит от индуктивности дросселя и ёмкости конденсатора С5. Включение слышно по небольшому циканию дросселя.

Транзисторы MJ15004 были в огромном количестве от ранее разобранных бесперебойников, поэтому решил поставить их на выходные. Для надёжности поставил два в параллель, хотя и один вполне справляется со своей задачей.
Вместо них можно поставить любые мощные p-n-p транзисторы, например КТ-818, КТ-825.

Дроссель L1 можно намотать на обычном Ш-образном (ШЛ) магнитопроводе, его индуктивность особо не критична, но желательно, чтобы подходила ближе к нескольким миллигенри.
Берётся любой подходящий сердечник, Ш, ШЛ, с сечением желательно не меньше 3 см,. Вполне подойдут сердечники от выходных транформаторов ламповых приёмников, телевизоров, выходные трансформаторы кадровых развёрток телевизоров и т.д. Например стандартный размер Ш, ШЛ-16х24.
Далее берётся медный провод, диаметром 1,0 - 1,5 мм и мотается до заполнения окна сердечника полностью.
У меня дроссель намотан на железе от трансформатора ТВК-90, проводом 1,5 мм до заполнения окна.
Магнитопровод, конечно собираем с зазором 0,2-0,5мм.(2 - 5 слоёв обычной писчей бумаги).

Единственный минус этого блока питания, под большой нагрузкой дроссель у меня жужжит, и этот звук меняется от величины нагрузки, что слышно и немного достаёт. Поэтому наверно нужно дроссель хорошо пропитывать, а может ещё лучше - залить полностью в каком нибудь подходящем корпусе эпоксидкой, чтобы уменьшить звук "цикания" .

Транзисторы я установил на небольшие алюминиевые пластины, и на всякий случай поставил внутрь ещё и вентилятор для их обдува.

Вместо VD1 можно ставить любые быстрые диоды на соответствующее напряжение и ток, у меня просто в наличии много диодов КД213, поэтому я их в таких местах в основном везде и ставлю. Они достаточно мощные (10А) и напряжение 100В, что вполне достаточно.

На мой дизайн блока питания особо внимание не останавливайте, задача стояла не та. Нужно было сделать быстро, и работоспособно. Сделал временно в таком корпусе и в таком оформлении, и пока это "временно" уже довольно долго работает.
Можно в схему ещё добавить амперметр для удобства. Но это дело личное. Я поставил одну головку для измерения напряжения и тока, шунт для амперметра сделал из толстого монтажного провода (на фотографиях видно, намотан на проволочном резисторе) и поставил переключатель "Напряжение" - "Ток". На схеме это просто не показал.

Собрал недавно очень неплохой лабораторный регулируемый блок питания по такой, многократно проверенной разными людьми схеме:

  • Регулировка от 0 до 40 В (при ХХ и 36В по расчету с нагрузкой) + возможна стабилизация до 50 В, но мне надо было именно до 36 В.
  • Регулировка тока от 0 до 6А (Imax устанавливается шунтом).

Имеет 3 вида защиты, если так можно назвать:

  1. Стабилизация по току (при превышении установленного тока - ограничивает его и любые изменения напряжения в сторону увеличения не вносят изменений)
  2. Триггерная защита по току (при превышении установленного тока отключает питание)
  3. Температурная защита (при превышении установленной температуры отключает питание на выходе) У себя ее не ставил.

Вот плата управления, основанная на LM324D.

С помощью 4х ОУ реализовано все управление стабилизацией и вся защита. В интернете более известна как ПиДБП. Данная версия - 16-я усовершенствованная, проверенная многими (v.16у2). Разрабатывается\лась на "Паяльнике". Проста в настройке, собирается буквально на коленке. Регулировка тока у меня довольно грубая и думаю стОит поставить еще дополнительную ручку точной настройки тока, помимо основной. На схеме справа есть пример как это сделать для регулировки напряжения, но можно применить и к регулировке тока. Питается все это от ИИП из одной из соседних тем, с квакающей "защитой":

Как всегда, пришлось развернуть по своему ПП. Думаю о нем здесь особо не стоит говорить. Для умощнения стабилизатора установлены 4 транзистора TIP142:

Все на общем теплоотводе (радиатор от CPU). Для чего их так много? Во-первых - для увеличения выходного тока. Во-вторых - для распределения нагрузки на все 4 транзистора, что в последующем исключает перегрев и выход из строя на больших токах и больших разниц потенциалов. Ведь стабилизатор - линейный и плюс к этому всему, чем выше напряжение на входе и меньше напряжение на выходе, тем больше энергии рассеивается на транзисторах. В добавок у всех транзисторов есть определенные допуски по напряжению и току, для тех кто все это не знал. Вот схема подключения транзисторов в параллель:

Резисторы в эмиттерах можно устанавливать в пределах от 0.1 до 1 Ома, стоит учитывать, что при увеличении тока падение напряжения на них будет существенно и естественно нагрев неизбежен.

Все файлы - краткую информацию, схемы в.ms12 и.spl7, печатку от одного из людей на паяльнике (100% проверенная, все подписано, за что ему огромное спасибо!) в .lay6 формате, предоставляю в архиве . Ну и, наконец, видео работы защиты и немного информации о БП в целом:

Цифровой VA-метр в дальнейшем заменю, поскольку он не точен, шаг показаний большой. Сильно разнятся показания тока при отклонении от настроенного. Например выставим 3 А и на нем тоже 3 А, но когда снизим ток до 0.5 А, то он будет показывать 0.4 А, например. Но это уже другая тема. Автор статьи и фото - BFG5000 .

Обсудить статью МОЩНЫЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ

Схема регулируемого блока питания 0…24 В, 0…3 А,
с регулятором тока ограничения.

В статье мы приводим вам не сложную принципиальную схему регулируемого 0 …24 Вольта блока питания. Ограничение тока регулируется переменным резистором R8 в диапазоне 0 … 3 Ампера. При желании этот диапазон можно увеличить путем уменьшения номинала резистора R6. Данный ограничитель тока является защитой блока питания от перегрузок и коротких замыканий на выходе. Величина выходного напряжения задается переменным резистором R3. И так, принципиальная схема:

Максимальное напряжение на выходе блока питания зависит от напряжения стабилизации стабилитрона VD5. В схеме применен импортный стабилитрон BZX24, его U стабилизации лежит в диапазоне 22,8…25,2 Вольта согласно описанию.

Вы можете скачать datashit на все стабилитроны этой линейки (BZX2…BZX39) по прямой ссылке с нашего сайта:

Так же в схеме можно применить отечественный стабилитрон КС527.

Список элементов схемы блока питания:

● R1 - 180 Ом, 0,5 Вт
● R2 - 6,8 кОм, 0,5 Вт
● R3 - 10 кОм, переменный (6,8…22 кОм)
● R4 - 6,8 кОм, 0,5 Вт
● R5 - 7,5 кОм, 0,5 Вт
● R6 - 0,22 Ом, 5 Вт (0,1…0,5 Ом)
● R7 - 20 кОм, 0,5 Вт
● R8 - 100 Ом, подстраиваемый (47…330 Ом)
● С1, С2 - 1000 х 35V (2200 х 50V)
● С3 - 1 х 35V
● С4 - 470 х 35V
● 100n - керамический (0,01…0,47 мкФ)
● F1 - 5 Ампер
● Т1 - КТ816, можно поставить импортный BD140
● Т2 - BC548, можно поставить BC547
● Т3 - КТ815, можно поставить импортный BD139
● Т4 - КТ819, можно поставить импортный 2N3055
● Т5 - КТ815, можно поставить импортный BD139
● VD1…VD4 - КД202, или импортная диодная сборка на ток не менее 6 Ампер
● VD5 - BZX24 (BZX27), можно заменить отечественным КС527
● VD6 - АЛ307Б (RED LED)

О выборе конденсаторов.

С1 и С2 стоят параллельно, поэтому их емкости складываются. Номиналы их выбираются из примерного расчета 1000 мкФ на 1 Ампер тока. То есть, если вы захотите поднять максимальный ток БП до 5…6 Ампер, значит номиналы С1 и С2 можно поставить по 2200 мкФ каждая. Рабочее напряжение этих конденсаторов выбирается изи расчета Uвх * 4/3 , то есть, если напряжение на выходе диодного моста составляет порядка 30 Вольт, значит (30*4/3=40) конденсаторы должны быть расчитаны на рабочее напряжение не менее 40 Вольт.
Номинал конденсатора С4 выбирается примерно из расчета 200 мкФ на 1 Ампер тока.

Печатная плата блока питания 0…24 В, 0…3 А:

О деталях блока питания.

● Трансформатор - должен быть соответствующей мощности, то есть если максимальное напряжение вашего блока питания составляет 24 Вольта, и вы рассчитываете, что ваш БП должен обеспечивать ток порядка 5 Ампер, соответственно (24 * 5 = 120) мощность трансформатора должна быть не менее 120 Ватт. Обычно трансформатор выбирают с небольшим запасом по мощности (от 10 до 50 %) Подробнее о расчете можно прочитать статью:

Если вы решили применить в схеме тороидальный трансформатор, его расчет описан в статье:

● Диодный мост - по схеме собран на отдельных четырех диодах КД202, они расчитаны на прямой ток 5 Ампер, параметры в таблице ниже:

5 Ампер это максимальный ток для этих диодов, и то установленных на радиаторы, поэтому для тока в 5 и более ампер лучше применять импортные диодные сборки ампер на 10.

Как альтернативу можете рассмотреть 10 Амперные диоды 10А2, 10А4, 10А6, 10А8, 10А10, внешний вид и параметры на картинках ниже:

На наш взгляд, лучшим вариантом выпрямителя будет применение импортных диодных сборок, например, типа KBU-RS 10/15/25/35 A, они и токи большие выдерживают, и места занимают гораздо меньше.

Параметры можете скачать по прямой ссылке:

● Транзистор Т1 - может слегка нагреваться, поэтому лучше его установить на небольшой радиатор или пластину из алюминия.

● Транзистор Т4 - однозначно будет нагреваться, поэтому ему нужен хороший радиатор. Это связано с мощностью, рассеиваемой на этом транзисторе. Приведем пример: на коллекторе транзистора Т4 имеем 30 Вольт, на выходе БП установили 12 Вольт, а ток при этом течет 5 Ампер. Получается, что 18 Вольт остается на транзисторе, а 18 Вольт умноженное на 5 Ампер получим 90 Ватт, это та мощность которая будет рассеиваться на транзисторе Т4. И чем меньшее напряжение вы установите на выходе БП, тем мощность рассеивания будет больше. Отсюда следует то, что транзистор следует выбирать внимательно, и обращать внимание на его характеристики. Ниже находятся две прямые ссылки на транзисторы КТ819 и 2N3055, можете скачать их себе на компьютер:

Регулировка тока ограничения.

Включаем блок питания, регулятором выходного напряжения устанавливаем 5 Вольт на выходе в холостом режиме, подключаем к выходу резистор 1 Ом мощностью не менее 5 Ватт с последовательно подключенным амперметром.
С помощью подстроечного резистора R8 устанавливаем необходимый ток ограничения, и чтобы убедиться, что ограничение работает, вращаем регулятор уровня выходного напряжения вплоть до крайнего положения, то есть до максимума, при этом величина выходного тока должна быть неизменной. Если вам не нужно изменять ток ограничения, тогда вместо резистора R8 установите перемычку между эмиттером Т4 и базой Т5, и тогда при номинале резистора R6 0,39 Ом ограничение тока будет происходить при токе 3 Ампера.

Как увеличить максимальный ток БП.

● Применение трансформатора соответствующей мощности, способного длительно отдавать требуемый ток в нагрузку.

● Применение диодов или диодных сборок, способных длительно выдерживать требуемый ток.

● Применение параллельного соединения регулирующих транзисторов (Т4). Схема параллельного включения ниже:

Мощность резисторов Rш1 и Rш2 не менее 5 Ватт. Транзисторы оба устанавливаются на радиатор, компьютерный вентилятор на обдув лишним не будет.

● Увеличение номиналов емкостей С1, С2, С4. (Если применять БП для заряда автомобильных аккумуляторов, этот пункт не критичен)

● Дорожки печатной платы, по которым будут течь большие токи, залудить оловом потолще, или поверх дорожек напаять дополнительный провод их утолщающий.

● Применение толстых соединительных проводов по линиям больших токов.

Внешний вид собранной платы блока питания: