Конструкция паровой турбины

Конструктивно современная паровая турбина (рис. 3.4) состоит из одного или нескольких цилиндров, в которых происходит процесс преобразования энергии пара, и ряда устройств, обеспечивающих организацию ее рабочего процесса.

Цилиндр. Основным узлом паровой турбины, в котором внутренняя энергия пара превращается в кинетическую энергию парового потока и далее – в механическую энергию ротора, является цилиндр. Он состоит из неподвижного корпуса (статора турбины из двух частей, разделенных по горизонтальному разъему; направляющих (сопловых) лопаток, лабиринтовых уплотнений, впускного и выхлопного патрубков, опор подшипников и др.) и вращающегося в этом корпусе ротора (вал, диски, рабочие лопатки и др.). Основная задача сопловых лопаток – превратить потенциальную энергию пара, расширяющегося в сопловых решетках с уменьшением давления и одновременным снижением температуры, в кинетическую энергию организованного парового потока и направить его в рабочие лопатки ротора. Основное назначение рабочих лопаток и ротора турбины – преобразовать кинетическую энергию парового потока в механическую энергию вращающегося ротора, которая в свою очередь преобразуется в генераторе в электрическую энергию. Ротор мощной паровой турбины представлен на рисунке 3.5.

Число венцов сопловых лопаток в каждом цилиндре паровой турбины равно числу венцов рабочих лопаток соответствующего ротора. В современных мощных паровых турбинах различают цилиндры низкого, среднего, высокого и сверхвысокого давления (рис. 3.6.). Обычно цилиндром сверхвысокого давления именуется цилиндр, давление пара на входе в который превосходит 30,0 МПа, цилиндром высокого давления – участок турбины, давление пара на входе в который колеблется в пределах 23,5 – 9,0 МПа, цилиндром среднего давления – участок турбины, давление пара на входе в который около 3,0 МПа, цилиндром низкого давления – участок, давление пара на входе в который не превышает 0,2 МПа. В современных мощных турбоагрегатах число цилиндров низкого давления может достигать 4 с целью обеспечения приемлемой по условиям прочности длины рабочих лопаток последних ступеней турбины.

Органы парораспределения. Количество пара, поступающего в цилиндр турбины, ограничивается открытием клапанов, которые вместе с регулирующей ступенью называются органами парораспределения. В практике турбиностроения различают два типа парораспределения – дроссельное и сопловое. Дроссельное парораспределение предусматривает подвод пара после открытия клапана равномерно по всей окружности венца сопловых лопаток. Это означает, что функцию изменения расхода выполняет кольцевая щель между клапаном, который перемещается, и его седлом, которое установлено неподвижно. Процесс изменения расхода в этой конструкции связан с дросселированием. Чем меньше открыт клапан, тем больше потери давления пара от дросселирования и тем меньше его расход на цилиндр.


Сопловое парораспределение предусматривает секционирование направляющих лопаток по окружности на несколько сегментов (групп сопел), к каждому из которых организован отдельный подвод пара, оснащенный своим клапаном, который либо закрыт, либо полностью открыт. При открытом клапане потери давления на нем минимальны, а расход пара пропорционален доле окружности, через которую этот пар поступает в турбину. Таким образом, при сопловом парораспределении процесс дросселирования отсутствует, а потери давления сводятся к минимуму.

В случае высокого и сверхвысокого начального давления в системе паровпуска применяются так называемые разгрузочные устройства, которые предназначены для уменьшения начального перепада давления на клапане и снижения усилия, которое необходимо приложить к клапану при его открытии.

В некоторых случаях дросселирование называют еще качественным регулированием расхода пара на турбину, а сопловое парораспределение – количественным.

Система регулирования. Эта система позволяет осуществлять синхронизацию турбогенератора с сетью, устанавливать заданную нагрузку при работе в общую сеть, обеспечивать перевод турбины на холостой ход при сбросе электрической нагрузки. Принципиальная схема системы непрямого регулирования с центробежным регулятором скорости представлена на рисунке 3.7.

С ростом частоты вращения ротора турбины и муфты регулятора центробежная сила грузов увеличивается, муфта регулятора скорости1 поднимается, сжимая пружину регулятора и поворачивая рычаг АВ вокруг точки В. Соединенный с рычагом в точке С золотник2 смещается из среднего положения вверх и сообщает верхнюю полость гидравлического сервомотора3 с напорной линией4 через окноa , а нижнюю – со сливной линией5 через окноb . Под воздействием перепада давлений поршень сервомотора перемещается вниз, прикрывая регулирующий клапан6 и уменьшая пропуск пара в турбину7 , что и обусловит снижение частоты вращения ротора. Одновременно со смещением штока сервомотора рычаг АВ поворачивается относительно точки А, смещая золотник вниз и прекращая подачу жидкости в сервомотор. Золотник возвращается в среднее положение, чем стабилизируется переходный процесс при новой (уменьшенной) частоте вращения ротора. Если увеличивается нагрузка турбины и частота вращения ротора падает, то элементы регулятора смещаются в противоположном рассмотренному направлении и процесс регулирования протекает аналогично, но с увеличением пропуска пара в турбину. Это приводит к росту скорости вращения ротора и восстановлению частоты генерируемого тока.

Системы регулирования паровых турбин, применяемых, например, на АЭС, в качестве рабочей жидкости используют, как правило, турбинное масло. Отличительной особенностью систем регулирования турбин К-300240-2 и К-500-240-2 является применение в системе регулирования вместо турбинного масла конденсата водяного пара. На всех турбинах НПО «Турбоатом», помимо традиционных гидравлических систем регулирования, применяют электрогидравлические системы регулирования (ЭГСР) с более высоким быстродействием.

Валоповорот. В турбоагрегатах традиционно применяется «тихоходный» – несколько оборотов в минуту – валоповорот. Валоповоротное устройство предназначено для медленного вращения ротора при пуске и останове турбины для предотвращения теплового искривления ротора. Одна из конструкций валоповоротного устройства изображена на рис. 3.8. Она включает электродвигатель с червяком, входящим в зацепление с червячным колесом1 , расположенным на промежуточном валике. На винтовой шпонке этого валика установлена ведущая цилиндрическая шестерня, которая при включении валоповоротного устройства входит в зацепление с ведомой цилиндрической шестерней, сидящей на валу турбины. После подачи пара в турбину частота вращения ротора растет и ведущая шестерня автоматически выходит из зацепления.

Подшипники и опоры. Паротурбинные агрегаты расположены, как правило, в машинном зале электростанции горизонтально. Такое расположение обусловливает применение в турбине наряду с опорными также и упорных или опорно-упорных подшипников3(см. рис. 3.8). Для опорных подшипников наиболее распространенным в энергетике является парное их количество – на каждый ротор приходится два опорных подшипника. Для тяжелых роторов (роторов низкого давления быстроходных турбин с числом оборотов 3000 об/мин и всех без исключения роторов «тихоходных» турбин с числом оборотов 1500 об/мин) допустимо применение традиционных для энергетического турбиностроения втулочных подшипников. В таком подшипнике нижняя половина вкладыша выполняет роль несущей поверхности, а верхняя половина – роль демпфера любых возмущений, возникающих при эксплуатации. К таким возмущениям можно отнести остаточную динамическую неуравновешенность ротора, возмущения, возникающие при прохождении критических чисел оборотов, возмущения за счет переменных сил от воздействия парового потока. Сила веса тяжелых роторов, направленная вниз, в состоянии подавить, как правило, все эти возмущения, что обеспечивает спокойный ход турбины. А для относительно легких роторов (роторов высокого и среднего давления) все перечисленные возмущения могут оказаться значительными по сравнению с весом ротора, особенно в паровом потоке высокой плотности. Для подавления этих возмущений разработаны так называемые сегментные подшипники. В этих подшипниках каждый сегмент обладает повышенной по сравнению с втулочным подшипником демпфирующей способностью.

Естественно, конструкция сегментного опорного подшипника, где каждый сегмент снабжается маслом индивидуально, значительно сложнее, чем втулочного. Однако резко возросшая надежность окупает это усложнение.

Что касается упорного подшипника, то его конструкция всесторонне рассмотрена еще Стодолой и за истекшее столетие практически не претерпела каких-либо изменений. Опоры, в которых располагаются упорный и опорные подшипники, изготавливают скользящими с «фикспунктом» в районе упорного подшипника. Это обеспечивает минимизацию осевых зазоров в области максимального давления пара, т.е. в области самых коротких лопаток, что в свою очередь позволяет минимизировать в этой зоне потери от утечек.


Типичная конструкция одноцилиндровой конденсационной турбины мощностью 50 МВт с начальными параметрами пара 8,8 МПа, 535°С представлена на рис. 3.8. В этой турбине применен комбинированный ротор. Первые 19 дисков, работающих в зоне высокой температуры, откованы как одно целое с валом турбины, последние три диска - насадные.

Неподвижную сопловую решетку, закрепленную в сопловых коробках или диафрагмах с соответствующей вращающейся рабочей решеткой, закрепленной на следующем по ходу пара диске, называютступенью турбины . Проточная часть рассматриваемой одноцилиндровой турбины состоит из 22 ступеней, из которых первая называетсярегулирующей . В каждой сопловой решетке поток пара ускоряется и приобретает направление безударного входа в каналы рабочих лопаток. Усилия, развиваемые потоком пара на рабочих лопатках, вращают диски и связанный с ними вал. По мере понижения давления пара при прохождении от первой к последней ступени удельный объем пара растет, что требует увеличения проходных сечений сопловых и рабочих решеток и, соответственно, высоты лопаток и среднего диаметра ступеней.

К переднему торцу ротора прикреплен приставной конец вала, на котором установлены бойки предохранительных выключателей (датчики автомата безопасности), воздействующие на стопорный и регулирующие клапаны и прекращающие доступ пара в турбину при превышении частоты вращения ротора на 10–12% по сравнению с расчетной.

Статор турбины состоит из корпуса, в который вварены сопловые коробки, соединенные с помощью сварки с клапанными коробками, установлены обоймы концевых уплотнений, обоймы диафрагм, сами диафрагмы и их уплотнения. Корпус этой турбины, кроме обычного горизонтального разъема, имеет два вертикальных разъема, разделяющих его на переднюю часть, среднюю часть и выходной патрубок. Передняя часть корпуса выполнена литой, средняя часть корпуса и выходной патрубок сделаны сварными.

В переднем картере расположен опорноупорный подшипник, в заднем картере – опорные подшипники роторов турбины и генератора. Передний картер установлен на фундаментной плите и при тепловом расширении корпуса турбины может свободно перемещаться по этой плите. Задний картер выполнен за одно целое с выхлопным патрубком турбины, который при тепловых расширениях остается неподвижным благодаря его фиксации пересечением поперечной и продольной шпонок, образующих так называемыйфикспункт турбины, или мертвую точку. В заднем картере турбины расположено валоповоротное устройство.

В турбине К-50-90 применена сопловая система парораспределения, т.е. количественное регулирование расхода пара. Устройство автоматического регулирования турбины состоит из четырех регулирующих клапанов, распределительного кулачкового вала, соединенного зубчатой рейкой с сервомотором. Сервомотор получает импульс от регулятора скорости и регулирует положение клапанов. Профили кулачков выполнены так, чтобы регулирующие клапаны открывались поочередно один за другим. Последовательное открытие или закрытие клапанов исключает дросселирование пара, проходящего через полностью открытые клапаны при пониженных нагрузках турбины.

Конденсатор и вакуумная система.

Подавляющее большинство турбин, используемых в мировой энергетике для производства электрической энергии, являются конденсационными. Это означает, что процесс расширения рабочего тела (водяного пара) продолжается до давлений, значительно меньших, чем атмосферное. В результате такого расширения дополнительно выработанная энергия может составлять несколько десятков процентов от суммарной выработки.

Конденсатор – теплообменный аппарат, предназначенный для превращения отработавшего в турбине пара в жидкое состояние (конденсат). Конденсация пара происходит при соприкосновении его с поверхностью тела, имеющего более низкую температуру, чем температура насыщения пара при данном давлении в конденсаторе. Конденсация пара сопровождается выделением теплоты, затраченной ранее на испарение жидкости, которая отводится при помощи охлаждающей среды. В зависимости от вида охлаждающей среды конденсаторы разделяются наводяныеивоздушные. Современные паротурбинные установки снабжены, как правило, водяными конденсаторами. Воздушные конденсаторы имеют по сравнению с водяными более сложную конструкцию и не получили в настоящее время широкого распространения.


Конденсационная установка паровой турбины состоит из собственно конденсатора и дополнительных устройств, обеспечивающих его работу. Подача охлаждающей воды в конденсатор осуществляется циркуляционным насосом. Конденсатные насосы служат для откачки из нижней части конденсатора конденсата и подачи его в систему регенеративного подогрева питательной воды. Воздухоотсасывающие устройства предназначены для удаления воздуха, поступающего в турбину и конденсатор вместе с паром, а также через неплотности фланцевых соединений, концевые уплотнения и другие места.

Схема простейшего поверхностного конденсатора водяного типа приведена на рис. 3.9.

Он состоит из корпуса, торцевые стороны которого закрыты трубными досками с конденсаторными трубками, выходящими своими концами в водяные камеры. Камеры разделяются перегородкой, которая делит все конденсаторные трубки на две секции, образующие так называемые «ходы» воды (в данном случае – два хода). Вода поступает в водяную камеру через патрубок и проходит по трубкам, расположенным ниже перегородки. В поворотной камере вода переходит во вторую секцию трубок, расположенную по высоте выше перегородки. По трубкам этой секции вода идет в обратном направлении, совершая второй «ход», попадает в камеру и через выходной патрубок направляется на слив.

Пар, поступающий из турбины в паровое пространство, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая вода. За счет резкого уменьшения удельного объема пара в конденсаторе создается низкое давление (вакуум). Чем ниже температура и больше расход охлаждающей среды, тем более глубокий вакуум можно получить в конденсаторе. Образующийся конденсат стекает в нижнюю часть корпуса конденсатора, а затем в конденсатосборник.

Удаление воздуха (точнее, паровоздушной смеси) из конденсатора производится воздухоотсасывающим устройством через патрубок8 . В целях уменьшения объема отсасываемой паровоздушной смеси ее охлаждают в специально выделенном с помощью перегородки отсеке конденсатора – воздухоохладителе.

Для отсоса воздуха из воздухоохладителя устанавливается трехступенчатый пароструйный эжектор – основной. Помимо основного эжектора, который постоянно находится в эксплуатации, в турбоустановке предусмотрены эжектор пусковой конденсатора (водоструйный) и эжектор пусковой циркуляционной системы. Эжектор пусковой конденсатора предназначен для быстрого углубления вакуума при пуске турбоустановки. Эжектор пусковой циркуляционной системы служит для отсоса паровоздушной смеси из циркуляционной системы конденсатора. Конденсатор турбоустановки снабжен также двумя конденсатосборниками, из которых образующийся конденсат непрерывно откачивается конденсатными насосами.

На переходном патрубке конденсатора размещены приемно-сбросные устройства, цель которых – обеспечить сброс пара из котла в конденсатор в обход турбины при внезапном полном сбросе нагрузки или в пусковых режимах. Расходы сбрасываемого пара могут достигать 60% полного расхода пара на турбину. Конструкция приемносбросного устройства предусматривает, помимо снижения давления, снижение температуры сбрасываемого в конденсатор пара с соответствующим ее регулированием. Она должна поддерживаться на 10–20°С выше температуры насыщения при данном давлении в конденсаторе.

Промежуточный перегрев и регенерация в турбоустановках. В теплоэнергетической установке с промежуточным перегревом пар после расширения в цилиндре высокого давления (ЦВД) турбины направляется в котел для вторичного перегрева, где температура его повышается практически до того же уровня, что и перед ЦВД. После промежуточного перегрева пар направляется в цилиндр низкого давления, где расширяется до давления в конденсаторерк.

Экономичность идеального теплового цикла с промежуточным перегревом зависит от параметров пара, отводимого на промежуточный перегрев. Оптимальную температуру параТ 1оп т , при которой он должен отводиться на промежуточный перегрев, можно ориентировочно оценить как 1,02–1,04 от температуры питательной воды. Давление пара перед промежуточным перегревом обычно выбирают равным 0,15-0,3 давления свежего пара. В результате промперегрева общая экономичность цикла возрастет. При этом благодаря уменьшению влажности пара в последних ступенях турбины низкого давления возрастут относительные внутренние к.п.д. этих ступеней, а следовательно, увеличится и к.п.д. всей турбины. Потеря давленияΔ р пп в тракте промежуточного перегрева (в паропроводе от турбины к котлу, перегревателе и паропроводе от котла к турбине) снижает эффект от применения промперегрева пара и поэтому допускается не более 10% потери абсолютного давления в промежуточном перегревателе.

Система регенерации в турбоустановках предполагает подогрев конденсата, образовавшегося в конденсаторе, паром, который отобран из проточной части турбины. Для этого основной поток конденсата пропускают через подогреватели, в трубную систему которых поступает конденсат, а в корпус подается пар из отборов турбины. Для подогрева основного конденсата применяют подогреватели низкого давления (ПНД), подогреватели высокого давления (ПВД) и между ними – деаэратор (Д). Деаэратор предназначен для удаления из основного конденсата остатков воздуха, растворенного в конденсате.

Идея регенерации в ПТУ возникла в связи с потребностью снижения потерь теплоты в конденсаторе. Известно, что потери теплоты с охлаждающей водой в конденсаторе турбины прямо пропорциональны количеству отработавшего пара, поступающего в конденсатор. Расход пара в конденсатор можно значительно уменьшить (на 30–40%) путем отбора его для подогрева питательной воды за ступенями турбины после того, как он произвел работу в предшествующих ступенях. Такой процесс называют регенеративным подогревом питательной воды. Регенеративный цикл по сравнению с обычным имеет более высокую среднюю температуру подвода теплоты при неизменной температуре отвода и обладает поэтому более высоким термическим к.п.д. Повышение экономичности в цикле с регенерацией пропорционально мощности, вырабатываемой на тепловом потреблении, т. е. на базе теплоты, переданной питательной воде в системе регенерации. Путем регенеративного подогрева температура питательной воды могла бы быть повышена до температуры, близкой к температуре насыщения, отвечающей давлению свежего пара. Однако при этом сильно возросли бы потери теплоты с уходящими газами котла. Поэтому международные нормы типоразмеров паровых турбин рекомендуют выбирать температуру питательной воды на входе в котел равной 0,65–0,75 температуры насыщения, отвечающей давлению в котле. В соответствии с этим при сверхкритических параметрах пара, в частности при начальном давлении егор0=23,5 МПа, температура питательной воды принимается равной 265–275°С.

Регенерация положительно влияет на относительный внутренний к.п.д. первых ступеней благодаря повышенному расходу пара через ЦВД и соответствующему увеличению высоты лопаток. Объемный пропуск пара через последние ступени турбины при регенерации уменьшается, что снижает потери с выходной скоростью в последних ступенях турбины.

В современных паротурбинных установках средней и большой мощности в целях повышения их экономичности применяют широко развитую систему регенерации с использованием пара концевых лабиринтовых уплотнений, уплотнений штоков регулирующих клапанов турбины и др. (рис.3.10).

Свежий пар из котла поступает в турбину по главному паропроводу с параметрамир 0 ,t 0 . После расширения в проточной части турбины до давленияр к он направляется в конденсатор. Для поддержания глубокого вакуума из парового пространства конденсатора основным эжектором (ЭЖ) отсасывается паровоздушная смесь. Конденсат отработавшего пара стекает в конденсатосборник, затем конденсатными насосами (КН) подается через охладитель эжектора (ОЭ), охладитель пара эжектора отсоса уплотнений (ОЭУ), сальниковый подогреватель (СП) и регенеративные подогреватели низкого давления П1, П2 в деаэратор Д. Деаэратор предназначен для удаления растворенных в конденсате агрессивных газов (О2 и СО2 ), вызывающих коррозию металлических поверхностей. Кислород и свободная углекислота попадают в конденсат из-за присосов воздуха через неплотности вакуумной системы турбинной установки и с добавочной водой. В деаэраторе агрессивные газы удаляются при нагревании конденсата и добавочной воды паром до температуры насыщения греющего пара. В современных паротурбинных установках устанавливают деаэраторы повышенного давления 0,6-0,7 МПа с температурой насыщения 158–165°С. Конденсат пара на участке от конденсатора до деаэратора называют конденсатом, а на участке от деаэратора до котла – питательной водой.

Питательная вода из деаэратора забирается питательным насосом (ПН) и под высоким давлением (на блоках со сверхкритическими и суперсверхкритическими параметрами пара до 35 МПа) подается через подогреватели высокого давления ПЗ, П4 в котел.

Пар концевых лабиринтовых уплотнений турбины отсасывается из крайних камер уплотнений, где поддерживается давление 95-97 кПа, специальным эжектором и направляется в охладитель эжектора отсоса, через который прокачивается основной конденсат. Часть пара повышенного давления из концевых лабиринтовых уплотнений направляется в первый и третий регенеративные отборы. С целью предотвращения присоса воздуха в вакуумную систему через концевые уплотнения турбины в каждой предпоследней камере концевых уплотнений поддерживается небольшое избыточное (110-120 кПа) давление с помощью специального регулятора, установленного на подводе уплотняющего пара к этой камере из деаэратора.

Питательная установка. Питательная установка турбоагрегата состоит из главного питательного насоса с турбинным приводом, пускорезервного питательного

насоса с электроприводом и бустерных насосов с электроприводом. Питательная установка предназначена для подачи питательной воды из деаэратора через подогреватели высокого давления в котел. Насос включается в работу при нагрузке блока 50–60% и рассчитан на работу в диапазоне 30–100%. Пускорезервный питательный насос ПЭН приводится во вращение асинхронным электродвигателем.


В том случае, если в установке имеются воздухо­меры, измеряющие количество воздуха, удаляемого из конденсатора, контроль воздушной плотности вакуумной системы должен быть постоянным и осуществляться пу­тем наблюдения за показаниями воздухомера и сравне­ния этих показаний с нормальными значениями, которые приняты для данной установки. Величина присоса возду­ха устанавливается для каждого агрегата в зависимости от пропуска пара в конденсатор. С уменьшением пропус­ка пара в конденсатор наблюдается повышение присоса воздуха в вакуумную систему. Последнее объясняется тем, что с уменьшением пропуска пара в турбину разре­жение распространяется на большее число ступеней тур­бины, захватывая регенеративные подогреватели и паро­проводы регенеративной системы. Распространение раз­режения обычно приводит к увеличению количества источников присоса воздуха.

В настоящее время воздушная плотность вакуумных систем турбоагрегатов значительно повысилась за счет широкого применения в установках сварных соединений и высокого качества сварочных работ.

Как свидетельствует опыт эксплуатации турбоагрега­тов, присос воздуха обычно не превышает 2-3 кг/ч для турбоагрегатов мощностью 20-25 Мвт и 5-10 кг/ч - для турбоагрегатов мощностью 100 Мвт и выше при но­минальной мощности и отличном состоянии воздушной плотности системы. При отсутствии воздухомеров для контроля за присосами воздуха необходимо периодиче­ски, обычно не реже 1 раза в месяц, производить про­верку воздушной плотности системы. В том случае, если имеются подозрения в отношении нарушения воздушной плотности, такая проверка может быть повторена.

Проверка воздушной плотности системы также про­водится перед остановкой турбоагрегата на ремонт и после ремонта. Проверка воздушной плотности вакуум­ной системы турбоагрегата по существу заключается в определении скорости падения вакуума при полностью отключенном воздухоудаляющем устройстве. Опытами установлено, что для всех турбоагрегатов имеется линейная зависимость падения разрежения от времени при отключенном отсосе воздуха. Таким образом, относи­тельная оценка качества воздушной плотности системы может производиться по скорости падения разрежения в конденсаторе в единицу времени (обычно за 1 мин).

Проверка плотности вакуумной системы произво­дится следующим образом. При нагрузке турбины примерно 50 или 75% полной закрывают задвижку на линии отсоса воздуха между конденсатором и воздухоудаляющим устройством. Циркуляционные и конденсатные насосы при этом должны работать на обычном режиме. После перекрытия линии отсоса воздуха через равные интервалы времени, обычно через каждые пол­минуты, производят запись показаний вакуумметра.

Общая продолжительность опыта чаще всего не пре­вышает 5-7 мин. Необходимо иметь в виду, что падение вакуума при проверке воздушной плотности не должно быть ниже 500-550 мм рт. ст. во избежание нагрева выхлопной части турбины. Воздушная плотность счи­тается хорошей, если скорость падения вакуума не пре­вышает 1 мм рт. ст. в минуту для турбин мощностью 25 Мвт и выше и 3-5 мм рт. ст. в минуту - для турбин мощностью до 25 Мвт. Большие скорости падения ва­куума свидетельствуют о ненормальных присосах возду­ха вследствие нарушения плотности вакуумной системы установки. В таких случаях необходимо приступать к отысканию мест присоса воздуха.

Отыскание мест присоса воздуха может произво­диться путем тщательного осмотра и проверки пред­полагаемых мест неплотностей пламенем свечи или опрессовкой конденсатора водой. Отыскание мест присосов воздуха является нелегкой задачей, требующей не только значительной затраты времени и труда, но и опре­деленных навыков.

Первый способ отыскания неплотностей заклю­чается в том, что все наиболее вероятные места присосов воздуха (фланцы, сальники, сварные швы, нахо­дящиеся под вакуумом, атмосферный клапан) прове­ряют пламенем свечи. По отклонению пламени можно установить место присоса воздуха. Однако этот способ неприменим для турбогенераторов с водородным охлаж­дением вследствие его пожарной опасности.

Второй способ - это опрессовка водой; он требует остановки турбины и не дает положительных результа­тов в тех случаях, когда имеются неплотности в корпусе турбины или в паропроводах регенеративных подогрева­телей.

В ФРГ был предложен способ отыскания воздушных неплотностей в вакуумной системе работающих турбо­установок с помощью галоидного течеискателя. Этот способ основан на том, что эмиссия, т. е. испускание с поверхностей раскаленной платины положительных ионов, очень резко возрастает в присутствии галоидов (галогенов) элементов VII группы периодической системы Менделеева (фтор, хлор, бром и под). Таким обра­зом, если в каком-либо газе окажется даже незначитель­ное присутствие галоидов, то эффект эмиссии ионов становится заметным. Наиболее подходящим галоидосо- держащим газом является фреон-12 (СF 2 Сl 2 ). Фреон не обладает токсическими свойствами, негорюч, не взрыво­опасен и не действует агрессивно на металлы.

На рис. 3-7 показана схема использования галоидного течеискателя для определения мест воздушных неплот­ностей в вакуумной системе турбоустановки. Галоидосодержащий газ находится в сжатом виде в баллоне 1, ко­торый через редуктор 2 соединен с гибким шлангом 3, на конце которого установлено сопло 4. Струя газа, вы­ходящего пз сопла, направляется на те места, которые проверяются на плотность. В случае наличия неплот­ности газ проникает в вакуумную систему и затем по­ступает в трубопровод 5, соединяющий конденсатор с воздухоудаляющим устройством. На трубопроводе отсоса воздуха, ближе к конденсатору, встраивается дат­чик 6, соединенный бронированным кабелем 7 с прибо­ром 8, в электрическую схему которого включен микро­амперметр, Прибор подключается к сети переменного тока. Отклонение стрелки микроамперметра зависит от интенсивности эмиссии ионов в датчике. Последнее нахо­дится в зависимости от попадания в датчик галоидов.

Таким образом, при наличии неплотности и проникнове­ния галоидосодержащего газа в вакуумную систему установки стрелка микроамперметра будет отклоняться вправо.

После встройки датчика в турбопровод 5 и подклю­чения прибора к сети переменного тока производят про­грев датчика небольшим током в течение 1-2 мин. Стрелку микроамперметра устанавливают на нуль. По­сле этого прибор готов к работе и можно приступать к обдувке фреоном вероятных мест присоса воздуха.

Опыты, проведенные с описанной выше установкой, показали, что время запаздывания (время с момента проникновения газа через неплотность до срабатывания микроамперметра) не превышает 3 сек при установке прибора на максимальную чувствительность. При таком времени запаздывания можно с достаточной точностью установить место нарушения плотности соединения.

Если галоидный течеискатель соединить с каким-либо звуковым или световым сигнальным прибором, то тогда поиски мест присоса воздуха могут проводиться одним человеком. При появлении звукового или светового сиг­нала следует заметить мелом место, которое обдувалось газом, и путем тщательного осмотра этого места или по­вторным обдуванием газом можно обнаружить место повреждения. Для отыскания неплотностей в труднодо­ступных местах может быть использован галоидный течеискатель, выполненный в виде щупа. Такие течеискатели у нас выпускаются под марками ГТИ-1 и ГТИ-2.

Определяющим показателем надежной и эффективной работы паровых турбин на электростанциях является оптимальная эксплуатация конденсационных установок. Основным назначением конденсационной установки паротурбинного агрегата является конденсация отработавшего пара турбины, который содержит примесь неконденсирующихся газов, в основном воздуха, проникающего через неплотности в вакуумной системе турбоагрегата. Для поддержания разрежения в паровом пространстве конденсатора неконденсирующиеся газы должны постоянно удаляться. Для этого на Российских электростанциях уже более 50 лет применяются штатные системы вакуумирования эжекторного типа.
В современных реалиях рынка процесс снижения издержек производства электроэнергии и тепла является ключевым фактором выживания в условиях жесткой рыночной конкуренции генерирующих компаний. Основным минусом эксплуатации паровых эжекторов для откачки паровоздушной смеси являются пережег топлива для выработки пара. Минусами эксплуатации водоструйных эжекторов являются большой расход технической воды, расход электроэнергии, затрачиваемой на работу подъемных насосов, а также потеря химобессоленной воды.
Предлагаемые нашей компанией вакуумные системы для откачки паровоздушной смеси из конденсатора паровых турбин электростанций состоят из двухступенчатых жидкостно-кольцевых вакуумных насосов с системой конденсации пара посредством впрыска воды до попадания в насос, теплообменник с замкнутым контуром охлаждения жидкостного кольца системы и сепаратор для разделения воздуха и воды. Принцип действия жидкостно-кольцевой вакуумной системы основан на откачке неконденсирующихся газов (воздуха) с остаточным содержанием пара, сжимающий паровоздушную смесь и выбрасывающих ее в атмосферу. Данные вакуумные системы уже многие десятилетия надежно функционируют и являются отраслевым стандартом в энергетической отрасли Европейских стран и США, а в последние годы активно внедряется и в странах Азии, таких как Индия, Китай, Корея и Япония и т.д.
Расчёты окупаемости показывают, что максимальные показатели окупаемости оборудования приходятся на электростанции, использующие прямоточную систему забора воды из водоемов.
Схема электростанций с прямоточным циклом снабжения технической воды приведена на схеме №1.




В связи с существующей проблемой водопользования, основные электрогенерирующие компании России ищут способы снижения расхода воды, забираемой из водных объектов. Это связано с принятием 26 декабря 2014 г. постановления Правительства РФ N 1509 «О ставках платы за пользование водными объектами, находящимися в федеральной собственности, и внесении изменений в раздел I ставок платы за пользование водными объектами, находящимися в федеральной собственности». Вследствие чего, ежегодный коэффициент за пользование водными объектами РФ на стремительно растет на 15% в год. Это постановление приводит к существенному снижению конкурентного уровня тепловых электростанций (ТЭС) с прямоточными системами, где средняя доля затрат на водоснабжение ТЭС с прямоточными системами технического водоснабжения от общих затрат на производство энергии в 2013 году составило 3,4%, а к 2017 году вырастет до 8,2 %, а на некоторых ТЭС - до 12 %.



Одним из решений снижения платы за водопользование является замена водоструйных эжекторов на вакуумные системы на базе водокольцевых насосов. В среднем при таких заменах срок окупаемости составит от 3 до 6 лет, и позволит:
- снизить расход электроэнергии вакуумной установки ~ в 7 раз;
- уменьшить расход технической воды на вакуумную установку ~ в 50 раз и более;
- исключить потери химобессоленой воды.

В конечном итоге эксплуатационные затраты жидкостно-кольцевых вакуумных систем на 60-80% ниже, в сравнении с эжекторными.
Схема электростанций с вакуумными жидкостно-кольцевыми установками приведена на схеме №2.



Мы проводим оптимальный подбор оборудования, обеспечивая баланс производительности вакуумной системы и КПД турбины. Благодаря широкому диапазону вакуумных насосов, каждая вакуумная система проектируется индивидуально, в соответствии со всеми требованиями Заказчика, обеспечивая баланс производительности вакуумной системы и КПД турбины, а также учитывая следующие факторы:

  • Практические условия эксплуатации энергоустановок при нормальных и аварийных присосах;
  • В соответствии с зарубежными и отечественными стандартами энергетической отрасли;
  • Практические Летние и Зимние условия;
  • Основные преимущества вакуумной системы:
  • двухступенчатый жидкостно-кольцевой вакуумный насос, оптимизированный специально для применения в энергетике;
  • Оптимальная скорость откачки для любой мощности турбины вплоть до 1500 МВ и выше;
  • Рассчитан на постоянную работу при вакууме близком к давлению насыщенных паров;
  • Надежная и стабильная работа в разных режима, не чувствительна к резким перепадам нагрузки;
  • Минимально необходимое энергопотребление
  • Отсутствие потерь конденсата/хим. обессоленной воды.
  • испытания, согласно стандартам HEI;

Для расчета и предоставления ТКП в Ваш адрес, просим Вас направить техническое задание или заполнить наш Опросный лист.

Присосы воздуха в вакуумную систему являются основной причиной ухудшения вакуума и оказывают решающее влияние на снижение располагаемой мощности и экономичности турбоустановки: каждый процент снижения вакуума уменьшает экономичность и вырабатываемую мощность на ~ 0,85% от номинальной. Каждые 20 кг/ч воздуха снижают вакуум на 0,1%, что снижает мощность и экономичность на ~0,08% (см. рис. 1).

Согласно опыту эксплуатации наиболее вероятны и значимы следующие места присосов воздуха в турбоустановках:

  • лабиринты концевых уплотнений, особенно ЦНД (до 60% присосов);
  • фланцевые соединения корпусов, находящиеся под разрежением, особенно при наличии теплосмен и разности температур соединяемых элементов;
  • сварные швы корпусов и трубопроводов, находящиеся под разрежением, особенно у плоских стенок и у линзовых компенсаторов.

При неработающей турбине используются следующие методы обнаружения мест присосов:

  • гидравлическая опрессовка (при этом вода заливается до расточек уплотнений ЦНД);
  • воздушная опрессовка с различными способами визуализации течей;
  • паровая опрессовка вакуумных полостей насыщенным паром;
  • пневмогидравлическая опрессовка, know-how (при этом водой заливается весь ЦНД вплоть до ресивера, а для увеличения внутреннего давления в верхнюю часть турбины подают сжатый воздух).

На работающей турбине для обнаружения мест присосов применяются другие методы:

  • поиски с помощью лёгких волокон или пламени свечи (противопоказано при водородном охлаждении генератора);
  • обдув вероятных мест присоса фторосодержащими газами (галогенами) с индикацией их на выходе из эжектора.

Метод с применением галоидных (галогенных) течеискателей обладает преимуществами, т.к. позволяет оперативно и точно указать место присоса. В сомнительных случаях близкого соседства нескольких мест присоса принимают меры к исключению одного из них. Так, например, при временном повышении давления пара в коллекторе подачи концевых уплотнений до видимого пропаривания исключается присос через лабиринты и возможен присос лишь между фланцами каминов.

Наиболее просто использование галоидных течеискателей, выпускаемых промышленностью, при наличии паровых эжекторов на отсосе воздуха из конденсатора. В этом случае датчик ставится на выхлопе воздуха из эжектора в машзал.

Для случаев использования водоструйных эжекторов применение галоидных течеискателей встречает некоторые затруднения, преодоление которых окупается, тем не менее, точностью результата.

«Русь-Турбо» предлагает электростанциям и энергосистемам заключить договор на совместное проведение обследования вакуумных систем энергоблоков с определением мест присоса воздуха до и после капремонта. По каждому из обнаруженных источников присоса воздуха рекомендуется соответствующий метод его устранения. Техдокументация на мероприятия по устранению присоса воздуха передается по дополнительным соглашениям.

7 страниц (Word-файл)

Посмотреть все страницы

Министерство образования и науки РФ

Федеральное агентство по образованию

ГОУВПО «Удмуртский государственный университет»

Кафедра теплоэнергетики

Лабораторная работа №1

ОПРЕДЕЛЕНИЕ ВОЗДУШНОЙ ПЛОТНОСТИ

ВАКУУМНОЙ СИСТЕМЫ ПАРОВОЙ ТУРБИНЫ

Выполнил

студент группы 34-41

Проверил

доцент кафедры ТЭС

Ижевск, 2006

1.Цель работы

Познакомить студентов с методом определения воздушной плотности вакуумной системы на действующей паровой турбине типа Т-I00-130ТМЗ.

2. Введение

Присосы воздуха через неплотности вакуумной системы крайне отрицательно сказываются на

работе паротурбинной установки, так как это приводит к ухудшению вакуума, повышению температуры отработавшего снижению вырабатываемой мощности турбины и, в конечном итоге, к снижению термического КПД турбоустановки.

При изменении давления в паровом пространстве конденсатора на 1кПа экономичность турбинной установки изменяется примерно на 1%, а турбин АЭС работающих на насыщенном паре, - до 1,5. Повышение экономичности турбины при углублении вакуума происходит за счет увеличения величины срабатываемого теплоперепада. Присосы воздуха в вакуумную систему полностью устранить невозможно, поэтому Правила технической эксплуатации электрических станций и сетей (ПТЭ) устанавливают нормы присосов воздуха зависимости от электрической мощности турбоустановки (см. табл. 1).

Таблица №1


3. Схема эксперимента и проведение опыта

На рисунке 1 показана схема эксперимента для проводимой лабораторной работы.


Рис. 1. Схема эксперимента.

В схему паротрубной установки входят:

1.Главный паропровод острого пара Æ 24545мм, выполненный из стали I2Х1М1Ф и рассчитанный на Р 0 =13,8МПа, t 0 =570 0 C , пропуск пара 500 т/ч.

2. Турбоагрегат типа Т-100-130ТМЗ мощностью N эл =100МВт.

3. Генератор электрического тока типа ТГВ-100 мощностью N эл =100МВт.

4. Конденсатор турбины типа КГ-6200-2 Р к =3,5 кПа, W охл.в. =1600м 3 /ч, t охл.в. =10 0 C .

5. Конденсатный насос типа КсВ500-220. Подача V =500м 3 /ч, напор Н=220м.в.ст.

6. Циркуляционный насос типа 0п2-87 V = м 3 /ч, Н=м.

7. Градирня для охлаждения циркуляционной воды типа БГ-1200-70. Площадь орошения 1200м 2 , высота башни 48,4м; диаметр верхний 26,0 м, нижний 40,0 м.

8. Напорный циркулярный водовод Æ 1200мм.

9. Сливной циркулярный водовод Æ 1200мм.

10. Пароструйный эжектор типа ЭП-3-700-1 производительностью по воздуху 70кг/ч.

11. Трубопровод отсоса воздуха из конденсатора Æ 2502мм, ст.З.

12. Технический стеклянный ртутный термометр со шкалой от 0 до 100 0 С для замера темпера паровоздушной смеси.

13. Паропровод подачи пара к основному эжектору Æ 502мм ст.10, t = 0 C .

14. Воздухомер типа ВДМ-63-1.

15. Вороночный слив дренажа основного эжектора.

16. Измерительный блок с диафрагмой БК 591079 преобразователя разности давления МПа.

17. Выхлопной патрубок пароструйного эжектора.

В вакуумную установку (систему) паровой турбины входят:

1. Конденсатор и его трубопроводы обвязки.

2. Конденсатные насосы и их всасывающие трубопроводы.

3. Цилиндр низкого давления (ЦНД) турбины и его концевые уплотнения.

4. Трубопроводы отсоса паровоздушной смеси к основным эжекторам.

5. Все подогреватели (ПНД) работающие под давлением пара ниже атмосферного.

На практике широко используется термин разряжение или вакуум , т.е. разность между атмосферным давлением и абсолютным давлением в конденсаторе :

здесь и выражены в миллиметрах ртутного столба. Абсолютное давление в конденсаторе (кПа) определяется как:

,(кПа)

здесь показания барометра и вакуумметра и соответственно выражены в миллиметрах ртутного столба и приведены к 0 0 С. Для измерения вакуума применяется также следующая единица:

В этой формуле - величина вакуума по штатному ртутному вакуумметру турбины, а - атмосферное давление (барометрическое) в мм рт. ст.

Применяются два способа определения воздушной плотности вакуумной системы паровой турбины:

1. По скорости падения (снижения) вакуума в конденсаторе турбины после отключения основного эжектора, которую замеряют секундомером. Далее, по специальному графику зависимости скорости падения вакуума от величины присосов определяют количество присосного воздуха [кг/ч].

2. Путем прямого замера количества отсасываемого эжектором воздуха (паровоздушной смеси) конденсатора турбины.

Первым способом, ввиду угрозы потери вакуума и аварийного отключения турбины, а также ввиду недостаточности точности измерений, практически не пользуются.

При проведении испытаний необходимые замеры расчетных величин выполняются по штатным приборам тур или переносным приборам класса точности не менее 1,0.

При обработке данных замеров необходимо пользоваться специальной таблицей температурных поправок показаниям воздухомера типа ВДМ-63-1.

3.1. Порядок проведения опыта.

По штатным приборам турбины замерить и записать в протокол наблюдений следующие величины:

1. Электрическую нагрузку турбоагрегата N эл [МВт] по мегаваттметру;

2. Расход пара на турбину D 0 по расходомеру [т/ч];

3. Вакуум в конденсаторе турбины по вакуумметру [%];

4. Барометрическое давление [мм. рт.ст.];

5. Показания воздухомера ВДМ-63-1 [кг/ч] на основном эжекторе A и Б. Норма присосов воздуха для турбины по ПТЭ должна быть не более 10 кг/ч. При G >10 кг/ч необходимо принимать мер уплотнению вакуумной системы.

Протокол наблюдений

Мощность

турбины

N эл [МВт]

Расход

пара

D 0 [т/ч]

Вакуум в конденсаторе турбины