Программа UniBox для расчета акустических систем с различными типами акустического оформления:

  • закрытый ящик (Closed Box)
  • фазоинвертор (Vented Box)
  • система с пассивным радиатором (Passive Radiator Box)
  • банд-пасс (Bandpass Single Tuned Box)

Очень простая и логичная программа, работает в оболочке Microsoft Windows Excel 2000. По отзывам, нормально функционируют и под Excel 97, если он соответсвующим образом обновлен. Позволяет симулировать уровень звукового давления, кривую импеданса динамиков, АЧХ и многое другое.

На сайте производителя можно найти базу по многим известным динамикам:
Audax, Focal, Monacor, Scan Speak, Vifa, Seas, Peerless, Altec, Audio Concepts, Bag End, BBC, Blaupunkt, Boston Acoustics, Celestion, Dayton, Dynaudio, Electro-Voice, Eminence, Fane, Focal, Gauss, JBL, JL Audio, Klipsch, McCauley, MCM, MG Electronics, Morel, Parts Express, Peavey, Performance Plus, Phoenix Gold, Pioneer, Pyle, Pyramid, Reflex, Rockford-Fosgate, SoundStream, Stillwater Designs, Tekton, Thruster, Ultimate, Vieta.
Кроме этого, Вы можете вручную добавлять характеристики динамиков и создавать новые базы данных.

Speaker Workshop

Программа расчета акустики и сабвуферов Speaker Workshop. Позволяет производить расчет корпусов, фильтров; различные измерения: импеданса динамиков, АЧХ, гармоничеких искажений, пассивных компонентов (конденсаторов, катушек индуктивности, резисторов); и многое другое. Имеется описание по работе с программой на русском языке. Рекомендуем .

JBL SpeakerShop

Программа расчета акустики и сабвуферов JBL SpeakerShop. JBL SpeakerShop состоит из двух независимых и взаимодополняющих частей: Enclosure Module — для расчета акустического оформления и Crossover Module — для расчета параметров разделительных фильтров. Кроме того, имеется база данных по динамикам различных производителей. Рекомендуем .

BassBox 6 Pro

Одна из лучших, в своем роде, программ для расчета акустических систем всех типов: закрытый ящик, фазоивертор, bandpass, а также для замера параметров динамических головок. Огромная база данных параметров динамиков, практически всех, известных производителей. Рекомендуем .

Очень полезная программа для графического отображения (рисования) схем и печатных плат. В Вашем распоряжение: удобный интерфейс и более 1300 стандартных элементов — не придется «прорисовывать» каждую микросхему или резистор. Приятная прога:-). Рекомендуем .

PSU Designer

Очень полезная программа. С ее помощью легко рассчитываются любые источники питания - мостовые, одно- и двухполупериодные, на кенотронах и диодах, с L и C-фильтром. В базе данных уже содержатся необходимые данные наиболее популярных выпрямителей, вам остается лишь задать напряжение на вторичной обмотке сетевого трансформатора и ток (сопротивление) нагрузки. Программа симулирует форму напряжения и тока в любой точке схемы и предупреждает, если какое-нибудь предельно допустимое значение для выпрямителя превышено. Новая версия PSU Designer позволяет сохранять файлы и редактировать их (информация с сайта «Салон AV»)

Attenuation Curve Calculator

Датская компания Danish Audio Connect, выпускающая прецизионные дискретные регуляторы и селекторы, предлагает софт для самостоятельного расчета аттенюаторов. Программа написана в Excel и, несмотря на простоту, учитывает массу параметров - общее сопротивление, характеристику, количество шагов и даже глубину регулировки. Такая любовь к самодельщикам объясняется просто - DACT предлагает не только готовые изделия, но и наборы, предоставляя конструктору самостоятельно выбрать тип резисторов по своему вкусу - углеродные, металлопленочные или танталовые.
(информация с сайта «Салон AV»)

Предлагаемый метод расчета фазоинвертора основан на простейших измерениях, проводимых с вполне определенным экземпляром громкоговорителя, устанавливаемым в акустический фазоинвертор и на номографическом определении размеров последнего.

В первую очередь, руководствуясь рис. 1 и таблицей, необходимо изготовить «стандартный объем» — герметичный фанерный ящик, все стыки которого во избежание утечек воздуха тщательно подогнаны, проклеены и промазаны пластилином.

Малогабаритные колонки для качественного воспроизведения звука

Расчет закрытого ящика (Версия 2)

Акустическое оформление в виде закрытого ящика можно рассматривать как предельный случай ящика-фазоинвертора с бесконечно малым отверстием. Эквивалентная акустическая схема низкочастотной головки в закрытом ящике может быть получена, если в схеме рис. 3 отбросить элементы, относящиеся к инвертору. Соответствующая частотная характеристика громкоговорителя совпадает с уравнением (17) при y3 = y4 = 0.

Среди множества типов частотных характеристик, которые могут быть получены для громкоговорителя в виде закрытого ящика. Наибольший интерес представляют гладкие частотные характеристики Баттерворта второго порядка. Эти характеристики образуются при условии выполнения соотношений между параметрами головки и ящика, выраженных уравнением (27) при f b /f s = 0. Особенностью громкоговорителей с частотными характеристиками Баттерворта второго порядка является то обстоятельство, что частота среза f 3 (29) совпадает с резонансной частотой головки в ящике f c .

Расчет фазоинвертора

В связи с частыми письмами о помощи расчета того или иного акустического оформления, пишу эту статью. Я не буду ни кому рассчитывать оформление, не всегда есть время. Я это сайт создал специально для тех, кому интересна акустика и которые хотят в ней разбираться. Я лучше выложу для ленивых готовые варианты и примеры расчетов, а дальше сами разбирайтесь, крутите мозгами. И так.

В области низких частот работа громкоговорителя не зависит от формы ящика или типа фазоинвертора, а определяется лишь двумя параметрами акустического оформления — объемом ящика-фазоинвертора V и частотой его настройки F b . К нахождению этих величин и сводится в основном расчет акустического оформления.

FAQ по динамикам и сабвуферам

В связи с множественными вопросами, как рассчитать корпуса длядинамиков я выкладываю несколько статей, связанных с расчетом акустического оформления для динамиков. Не забываем, что акустическое оформление важно для НЧ-головок. И так начинаем....

В последнее время стало слышно очень много вопросов про динамики и сабвуферы. Подавляющее большинство ответов можно получить на первых трех страницах любой книги, написанной профессионалами. Материал адресован в первую очередь начинающим, ленивым;) и сельским самодельщикам, подготовлен на основе книг И.А.Алдощиной, В.К.Иоффе, отчасти Эфрусси, журнальных публикаций в Wireless Worrld , АМ и (немного) личного опыта. HЕ использовалась информация из Интернета и ФИДОнета. Материал никоим образом не претендует на полноту освещения проблемы, а представляет собой попытку объяснить на пальцах азы акустики.

Чаще всего вопрос звучит примерно так: "нашел динамик, что с ним делать?", или "Товарищч, а говорят такие сабвуферы бывают...". Здесь мы рассмотрим только один вариант решения этой проблемы: По имеющемуся динамику сделать ящик, с оптимальными параметрами на HЧ, насколько это возможно. Этот вариант сильно отличается от задачи заводского конструктора-натянуть нижнюю частоту системы до необходимой по ТУ величины

Звук в конце тоннеля

"Володя, будешь на складе - захвати порты для фазиков …"
(подслушано в одной из московских установочных студий)

Когда АвтоЗвук был еще маленьким и сидел под крылом Салона АВ , вышли в свет две первые части трилогии о сабвуферах - о том, чего ждать от разных типов акустического оформления и как подобрать динамик для закрытого ящика.

Значительная часть тех, кто, обдумывая житье, решил с пониманием отнестись к басовому вооружению своего автомобиля, этим, в принципе, уже могла бы обойтись. Но не все. Поскольку существует как минимум еще один, чрезвычайно популярный тип акустического оформления, по распространенности не уступающий закрытому ящику.

Фазоинвертор в отечественной литературе, bass reflex, ported box, vented box - в англоязычной - все это, по сути, звукотехническая реализация идеи резонатора Гельмгольца. Идея проста - замкнутый объем соединяется с окружающим пространством с помощью отверстия, содержащего некоторую массу воздуха. Вот именно существование этой массы - того самого столба воздуха, который, по утверждению Остапа Бендера, давит на любого трудящегося, и производит чудеса, когда резонатор Гельмгольца нанимают на работу в составе сабвуфера. Здесь мудреная вещь имени германского физика приобретает прозаическое имя тоннеля (по-буржуйски port или vent) .

Заряжаем....

Потом стал считать объем скрипичной коробки, и работа эта была долгая и увлекательная. …. Объем нельзя уменьшить - скрипка засипит, начнет глухо бубнить. Если увеличить - пронзительно завизжит, басы танут тусклыми и слабыми.…
(А.А.Вайнер, Г.А.Вайнер Визит к Минотавру)

В статье выяснили, чем хороши различные типы акустического оформления и чем плохи. Казалось бы, теперь "цели ясны, за работу, товарищи.." Не тут-то было. Во-первых, акустическое оформление, в которое не установлен собственно динамик - всего лишь с той или иной степенью тщательности собранная коробка. А зачастую и собрать-то ее нельзя, пока не будет определено, какой динамик окажется в нее установлен. Во-вторых, и в этом главная потеха в проектировании и изготовлении автомобильных сабвуферов — характеристики сабвуфера немногого стоят вне контекста характеристик, хотя бы самых основных, автомобиля, где он будет работать. Есть еще и в-третьих. Мобильная акустическая система, одинаково приспособленная для любой музыки — редко достигаемый идеал. Грамотного установщика можно узнать обычно по тому, что, "снимая показания" с клиента, заказывающего аудиоустановку, он просит принести образцы того, что клиент будет слушать на заказанной им системе после ее завершения.

Как видно, факторов, влияющих на решение - очень много и свести все к простым и однозначным рецептам нет никакой возможности, что и превращает создание мобильных аудиоустановок в занятие сильно родственное искусству. Но некоторые общие ориентиры наметить все же можно.

  • Предыдущая


Оптимизация расположения громкоговорителей в комнате прямоугольной формы

Для достижения высокого качества звуковоспроизведения, акустические характеристики комнаты для прослушивания необходимо приблизить к определенным оптимальн м значениям. Это достигается формированием "акустически правильной" геометрии помещения, а также с помощью специальной акустической отделки внутренних поверхностей стен и потолка.

Но очень часто приходится иметь дело с комнатой, форму которой изменить уже невозможно. При этом собственные резонансы помещения могут крайне негативно повлиять на качество звучания аппаратуры. Вважным инструментом для снижения влияния комнатных резонансов является оптимизация взаимного расположения акустических систем относительно друг друга, ограждающих конструкций и зоны прослушивания.

Предлагаемые калькуляторы предназначены для расчетов в прямоугольных симметричных помещениях с низким фондом звукопоглощения.


Применение на практике результатов данных расчетов позволит уменьшить влияние комнатных мод, улучшить тональный баланс и выровнять АЧХ системы "АС-комната" на низких частотах.
Необходимо отметить, что результаты расчетов не обязательно приводят к созданию "идеальной" звуковой сцены, они касаются только коррекции акустических дефектов, вызванных, прежде всего, влиянием нежелательных комнатных резонансов.
Но результаты расчетов могут стать хорошей отправной точкой для дальнейшего поиска оптимального месторасположения АС с точки зрения индивидуальных предпочтений слушателя.

Определение площадок первых отражений


Слушатель, находящийся в комнате для прослушивания музыки, воспринимает не только прямой звук, излучаемый акустическими системами, но и отражения от стен, пола и потолка. Интенсивные отражения от некоторых участков внутренних поверхностей комнаты (площадок первых отражений) взаимодействуют с прямым звуком АС, что приводит к изменению частотной характеристики звука, воспринимаемого слушателем. При этом на некоторых частотах происходит усиление звука, а некоторых его значительное ослабление. Этот акустический дефект, называемый "гребенчатой фильтрацией", приводит к нежелательному "окрашиванию" звука.

Управление интенсивностью ранних отражений позволяет улучшить качество звуковой сцены, сделать звучание АС более ясным и детальн м. Наиболее важны ранние отражения от площадок, расположенных на боковых стенах и потолке между зоной прослушивания и АС. Кроме того, большое влияние на качество звука могут оказать отражения от тыловой стены, если зона прослушивания расположена к ней слишком близко.

На участках расположения площадок ранних отражений рекомендуется размещать звукопоглощающие материалы или звукорассеивающие конструкции (акустические диффузоры). Акустическая отделка площадок ранних отражений должна быть адекватна частотному диапазону, в котором более всего наблюдаются акустические искажения (эффект гребенчатой фильтрации).

Линейные размеры применяемых акустических покрытий должны быть на 500-600 мм больше размеров площадок первых отражений. Параметры необходимой акустической отделки в каждом конкретном случае рекомендуется согласовать с инженером-акустиком.

"

Расчет
резонатора Гельмгольца

Резонатор Гельмгольца является колебательной системой с одной степенью свободы, поэтому он обладает способностью отзываться на одну определенную частоту, соответствующую его собственной частоте.

Характерной особенностью резонатора Гельмгольца является его способность совершать низкочастотные собственные колебания, длина волны которых значительно больше размеров самого резонатора.

Это свойство резонатора Гельмгольца используется в архитектурной акустике при создании так называемых щелевых резонансных звукопоглотителей (Slot Resonator). В зависимости от конструкции резонаторы Гельмгольца хорошо поглощают звук на средних и низких частотах.

В общем случае конструкция поглотителя представляет собой деревянный каркас, смонтированный на поверхности стены или потолка. На каркасе закрепляется набор деревянных планок, между которыми оставляются зазоры. Внутреннее пространство каркаса заполняется звукопоглощающим материалом. Резонансная частота поглощения зависит от сечения деревянных планок, глубины каркаса и эффективности звукопоглощения изоляционного материала.

fo = (c/(2*PI))*sqrt(r/((d*1.2*D)*(r+w))) , где

w - ширина деревянной планки,

r - ширина зазора,

d - толщина деревянной планки,

D - глубина каркаса,

с - скорость звука в воздухе.

Если в одной конструкции применять планки различной ширины и закреплять их с неодинаков ми зазорами, а также выполнять каркас с переменной глубиной, можно построить поглотитель, эффективно работающий в широкой полосе частот.

Конструкция резонатора Гельмгольца достаточно проста и может быть собрана из недорогих и доступных материалов непосредственно в музыкальной комнате или в студийном помещении во время производства строительных работ.

"

Расчет панельного НЧ-поглотителя конверсионного типа (НЧКП)

Панельный поглотитель конверсионного типа является достаточно популярным средством акустической обработки музыкальных комнат благодаря простой конструкции и довольно высокой эффективности поглощения в области низких частот. Панельный поглотитель представляет собой жесткий каркас-резонатор с замкнутым объемом воздуха, герметично закрытый гибкой и массивной панелью (мембраной). В качестве материала мембраны, обычно применяют листы фанеры или MDF. Во внутреннее пространство каркаса помещается эффективный звукопоглощающий материал.

Звуковые колебания приводят в движение мембрану (панель) и присоединенный объем воздуха. При этом кинетическая энергия мембраны преобразуется в тепловую энергию за счет внутренних потерь в материале мембраны, а кинетическая энергия молекул воздуха преобразуется в тепловую энергию за счет вязкого трения в слое звукопоглотителя. Поэтому мы называем такой тип поглотителя конверсионным.

Поглотитель представляет собой систему масса-пружина, поэтому он обладает резонансной частотой, на которой его работа наиболее эффективна. Поглотитель может быть настроен на желаемый диапазон частот путем изменения его формы, объема и параметров мембраны. Точн й расчет резонансной частоты панельного поглотителя является сложной математической задачей, и результат зависит от большого количества исходных параметров: способа закрепления мембраны, её геометрических размеров, конструкции корпуса, характеристик звукопоглотителя и т.п.

Тем не менее, использование некоторых допущений и упрощений позволяет достичь приемлемого практического результата.

В таком случае, резонансную частоту fo можно описать следующей оценочной формулой:

fo=600/sqrt(m*d) , где

m - поверхностная плотность мембраны, кг/кв.м

d - глубина каркаса, см

Данная формула справедлива для случая, когда внутреннее пространство поглотителя заполнено воздухом. Если внутрь поместить пористый звукопоглощающий материал, то на частотах ниже 500 Гц процессы в системе перестают быть адиабатическими и формула трансформируется в другое соотношение, которое и применяется в он-лайн калькуляторе "Расчет панельного поглотителя":

fo=500/sqrt(m*d)

Заполнение внутреннего объема конструкции пористным звукопоглощающим материалом снижает добротность (Q) поглотителя, что приводит к расширению его рабочего диапазона и увеличению эффективности поглощения на НЧ. Слой звукопоглотителя не должен прикасаться к внутренней поверхности мембраны, также желательно оставить воздушный зазор между звукопоглотителем и задней стенкой устройства.
Теоретический рабочий диапазон частот панельного поглотителя расположен в пределах +/- одна октава относительно расчетной резонансной частоты.

Необходимо отметить, что в большинстве случаев описанного упрощенного подхода вполне достаточно. Но иногда решение ответственной акустической задачи требует более точного определения резонансных характеристик панельного поглотителя с учетом сложного механизма изгибных деформаций мембраны. Это требует проведения более точных и достаточно громоздких акустических расчетов.

"

Расчет размеров студийных помещений в соответствии с рекомендациями EBU/ITU, 1998

За основу взята методика, разработанная в 1993 году Робертом Волкером (Robert Walker) после серии исследований, проведенных в инженерном департаменте ВВС (Research Department Engineering Division of ВВС). В результате была предложена формула, регулирующая соотношение линейных размеров помещения в достаточно широких пределах.

В 1998 году данная формула была принята в качестве стандарта Европейским Радиовещательн м Союзом (European Broadcasting Union, Technical Recommendation R22-1998) и Международным Телекоммуникационным Союзом (International Telecommunication Union Recommendation ITU-R BS.1116-1, 1998) и рекомендована к применению при строительстве студийных помещений и музыкальных комнат прослушивания.
Соотношение выглядит следующим образом:

1.1w/h <= l/h <= 4.5w/h - 4,

l/h < 3, w/h < 3

где l - длина, w - ширина, и h - высота помещения.

Кроме того, должны быть исключены целочисленные соотношения длинны и ширины помещения к его высоте в пределах +/- 5%.

Все размеры должны соответствовать расстояниям между основными ограждающими конструкциями помещения.

"

Расчет диффузора Шредера

Проведение расчетов в предлагаемом калькуляторе подразумевает ввод данных в диалоговом режиме и дальнейшее выведение результатов на экран в виде диаграммы. Расчет времени реверберации производится по методике, изложенной в СНиП 23-03-2003 "Защита от шума" в октавных полосах частот по формуле Эйринга (Carl F. Eyring):

Т (сек) = 0,163*V / (−ln(1−α)*S + 4*µ*V)

V - объем зала, м3
S - суммарная площадь всех ограждающих поверхностей зала, м2
α - средний коэффициент звукопоглощения в помещении
µ - коэффициент, учитывающий поглощение звука в воздухе

Полученное расчетное время реверберации графически сравнивается с рекомендуемым (оптимальным) значением. Оптимальным называют такое время реверберации, при котором звучание музыкального материала в данном помещении будет наилучшим или при котором разборчивость речи будет наивысшей.

Оптимальные значения времени реверберации нормируются соответствующими международными стандартами:

DIN 18041 Acoustical quality in small to medium-sized rooms, 2004
EBU Tech. 3276 - Listening conditions for sound programme, 2004
IEC 60268-13 (2nd edition) Sound system equipment - Part 13, 1998

Динамики в акустических системах должны быть подключены таким образом, чтобы на каждый из них поступало напряжение только тех частот, которые он должен воспроизводить. Это достигается тем, что в звуковой тракт включается электрический фильтр, который обеспечивает подавление сигнала нежелательных частот. Применение фильтра в АС обусловлено необходимостью выполнения 2-х основных задач:

  • ограничение полосы воспроизводимых частот, для устранения избыточного звукового давления;
  • ограничение полосы частот, которая способна вызвать повреждение динамика (например, проникновение НЧ сигнала на ВЧ динамик);

Фильтры бывают пассивные и активные. Пассивные фильтры включаются между усилителем и акустической системой и монтируются внутри последней. Пассивные фильтры имеют фиксированные характеристики и не имеют возможностей регулировки параметров в процессе эксплуатации системы.

Активные фильтры (активные кроссоверы) включаются между источником сигнала и усилителем. К достоинствам активных фильтров можно отнести более гибкие возможности регулировки параметров. Среди недостатков – необходимость использования отдельного канала усиления для каждой отфильтрованной полосы частот.

В реальных звуковых комплексах часто комбинируют эти два типа фильтров.

Расчёт пассивного фильтра

Фильтр АС представляет собой совокупность электрических цепей предназначенных для ограничения определённых частот, поступающих на динамики.

Фильтры встречаются следующих типов (см. рис.1):

  • Фильтр высоких частот (ФВЧ) – ограничивает частотный диапазон динамика снизу;
  • Фильтр низких частот (ФНЧ) – ограничивает частотный диапазон динамика сверху;
  • Полосовой фильтр (ПФ) – ограничивает частотный диапазон динамика сверху и снизу;
  • Комбинированный тип – представляет собой сочетание вышеуказанных типов.

Фильтр характеризуется частотой раздела и величиной порядка (1-го порядка, 2-го порядка и т.д.) Порядок фильтра определяет крутизну спада АЧХ в полосе заграждения, и определяется количеством реактивных элементов в электронной схеме. Каждый реактивный элемент, добавленный в схему, увеличивает порядок фильтра на единицу и, соответственно, крутизну спада характеристики на 6дБ/окт. Реактивные элементы фильтра представляют собой индуктивности (катушки) и емкости (конденсаторы), соединённые по определённой схеме. Номиналы реактивных элементов определяют частоту среза фильтра.

Для подавления избыточной чувствительности динамика в схему добавляется аттенюатор (делитель напряжения). Данная мера применяется для приведения чувствительностей динамиков в АС к единому уровню. Чувствительность НЧ динамика обычно может составлять 95-100дБ, в то время как типовое значение чувствительности ВЧ динамика может достигать 110дБ. Очевидно, что необходимо понизить чувствительность ВЧ динамика до уровня чувствительности НЧ. Если номинальные сопротивления НЧ и ВЧ динамиков равны, то необходимое подавление будет равно разности чувствительностей ВЧ и НЧ динамиков. Расчёт несколько осложняется, если номинальные сопротивления динамиков не равны, т.к. в этом случае следует пересчитать чувствительность ВЧ динамика для номинального сопротивления, равного номинальному сопротивлению НЧ. Принцип пересчёта будет рассмотрен ниже.

Расчёт фильтра для 2-х полосной акустической системы

Обратим внимание, что расчёты способны дать приближённый результат, который можно использовать в качестве исходного варианта для изготовления макета фильтра. Как правило, изготовленный на основании расчётов фильтр, требует доработки на реальной АС, которая заключается в более оптимальном подборе электрических компонентов. Окончательная оценка фильтра формируется на основании измерений АЧХ и в результате прослушивания АС на разных фонограммах.

Рассмотрим распространённый вариант фильтра, реализованный во многих 2-х полосных полнодиапазонных АС.

Электрическая схема акустической системы с таким фильтром представлена на рис.2.

Особенностью схемы является то, что НЧ динамик в такой АС работает «в широкую полосу», а диапазон воспроизведения ВЧ динамика ограничен со стороны низких частот с помощью ФВЧ 3-го порядка, что обеспечивает спад характеристики в полосе заграждения 18 дБ/окт. Резисторы R1 и R2 представляют собой делитель напряжения, обеспечивающий подавление избыточной чувствительности ВЧ динамика. Номинал R2 выбирается равным или в 2 – 3 раза больше номинального сопротивления ВЧ динамика (Zвч). Данная схема проста в реализации, имеет малый вес и габариты, низкую стоимость компонентов. Необходимо отметить, что данная схема может быть реализована, только при условии, что неравномерность АЧХ НЧ динамика не превышает допустимого значения во всём его рабочем диапазоне.

Обычно конструирование фильтра начинается с анализа АЧХ динамиков и выбора оптимальной частоты раздела. Расчёт фильтра сводится к определению номиналов элементов электрической схемы фильтра.

Расчёт фильтра включает следующие этапы:

1.Определение величины подавления избыточной чувствительности ВЧ (ослабление):

2.Расчёт номиналов элементов делителя:

3.Расчёт номиналов реактивных элементов:

4.Расчёт мощности, рассеиваемой на элементах:

Мощность используемых резисторов может быть меньше рассчитанных значений в 2-3 раза, т.к. паспортная мощность резисторов указывается для синусоидального сигнала.

Для удобства расчёта фильтров по описанному алгоритму на нашем сайте имеется специальный калькулятор. Используя его, вам не составит труда рассчитать фильтр для вашей АС. При расчёте используются исходные данные и выражения, которые рассматривались выше.

Номинальное сопротивление НЧ звена, Ом 8 Z_low 2 4 16 32

Чувствительность НЧ звена, дБ

JBL Speakershop включает в себя две независимые программы: Enclosure Module и Crossover Module.

Enclosure Module предназначен для определения необходимого объема и размеров корпусов низкочастотных громкоговорителей. Качество звучания конструкции оценивается в режиме нормального уровня прослушивания (анализ на малых сигналах, включающий групповую задержку, фазовую и амплитудно-частотную характеристику, величину сопротивления звуковой катушки) и при максимальной громкости (анализ на больших сигналах, учитывающий индекс термальной акустической мощности на средних частотах и максимальную мощность при различных отклонениях).

Утилита Enclosure Module позволяет самостоятельно выбирать два направления конструирования корпусов: с учетом конкретных динамиков или путем подбора подходящих динамиков для уже имеющегося корпуса (ограниченного пространства).

Рассматриваемый модуль программы предлагает моделирование корпусов с фазоинвертором пользовательской, оптимальной и рассчитанной на уникальную полосу частот конструкций, корпусов с пассивным излучателем, а также закрытых систем оптимального или пользовательского типа. Одновременная демонстрация конструкции всех типов облегчает их сравнительный анализ.

В программе описывается строение и основные параметры корпусов каждого типа, присутствуют списки их достоинств и недостатков. Для начинающих есть файл помощи, облегчающий работу, а также прилагаются примеры с соответствующими примечаниями и инструкциями.

Набор минимальных параметров, необходимых для конструирования корпуса, включает в себя название фирмы-производителя и номер модели, а также значение резонансной частоты динамика, объем воздуха с упругостью равной упругости подвеса динамика и добротность устройства с учетом всех потерь. Полный же список параметров включает в себя длинный ряд механических, электрических и комбинированных значений проектируемого девайса. Помимо прочего JBL Speakershop Enclosure Module строит графики максимальной звуковой мощности, амплитудно-частотной характеристики (нормированной и при подаче тестового сигнала 2,83 В), сопротивления звуковой катушки, групповой и фазовой задержек.

Вторая часть программы JBL Speakershop – Crossover Module – предназначена для определения параметров фильтров-кроссоверов, разделяющих сигнал на низкие и высокие частоты. Утилита проводит расчет двух- и трехполосных пассивных разделительных систем первого, второго, третьего и четвертого порядков с применением целого ряда типовых фильтров: Чебышева, Бесселя, Баттерворта, Гаусса, Лежандра, Линквица-Райли и некоторых других. Результатом работы является построение подробной электрической принципиальной схемы уникальной кроссоверной системы с подробным описанием каждого элемента.

В России программа JBL Speakershop получила широчайшее распространение среди радиолюбителей, занимающихся разработкой собственных автомобильных акустических систем. Однако рассчитанные и построенные в данной утилите амплитудно-частотные характеристики звуковоспроизводящей автомобильной системы весьма неточны и сильно зависят от особенностей конструкции конкретной машины. Для правильной работы в программу необходимо вводить дополнительные данные, например передаточную функцию салона автомобиля.

Программа JBL Speakershop была создана в 1995 году специалистами американской компании JBL. Компания входит в объединение «Harman International Industries», специализирующейся на производстве акустических систем высокого класса и сопутствующей им электроники. Продукция JBL стала основой для разработки стандарта THX, а динамические головки компании используется в автомобилях ведущих мировых производителей.

Язык интерфейса JBL Speakershop только английский. Однако в Интернете существует подробнейшее описание работы на русском языке.

Системные требования к утилите минимальные. JBL Speakershop работает в операционной системе Microsoft Windows, включая ее последние версии: Vista и 7. Единственное исключение – отсутствие поддержки 64-разрядных операционных систем.

Распространение программы: бесплатная