Вступление

Измерение trueRMS переменного напряжения - задача не совсем простая, не такая, какой она кажется с первого взгляда. Прежде всего потому, что чаще всего приходится измерять не чисто синусоидальное напряжение, а нечто более сложное, усложнённое наличием гармоник шумов.

Поэтому соблазнительно простое решение с детектором среднего значения с пересчётом в ср.кв. значения не работает там, где форма сигнала сильно отличается от синусоидальной или просто неизвестна.

Профессиональные вольтметры ср. кв. значения - это достаточно сложные устройства как по схемотехнике, так и по алгоритмам . В большинстве измерителей, которые носят вспомогательный характер и служат для контроля функционирования, такие сложности и точности не требуются.

Также требуется, чтобы измеритель мог быть собран на самом простом 8-битном микроконтроллере.

Общий принцип измерения

Пусть имеется некое переменное напряжение вида, изображённого на рис. 1.

Квазисинусоидальное напряжение имеет некий квазипериод T.

Преимущество измерения среднеквадратичного значения напряжения в том, что в общем случае время измерения не играет большой роли, оно влияет только на частотную полосу измерения. Большее время даёт большее усреднение, меньшее даёт возможность увидеть кратковременные изменения.

Базовое определение ср. кв. значения выглядит вот таким образом:


где u(t) - мгновенное значение напряжения
T - период измерения

Таким образом, время измерения может быть, вообще говоря, любым.

Для реального измерения реальной аппаратурой для вычисления подинтегрального выражения необходимо проквантовать сигнал с некоторой частотой, заведомо превосходящей не менее, чем в 10 раз частоту квазисинусоиды. При измерении сигналов с частотами в пределах 20 кГц это не представляет проблемы даже для 8-битных микроконтроллеров.

Другое дело, что все стандартные контроллеры имеют однополярное питание. Поэтому измерить мгновенное переменное напряжение в момент отрицательной полуволны не представляется возможным.

В работе предложено довольно остроумное решение, как внести постоянную составляющую в сигнал. Вместе с тем в том решении определение момента, когда стоит начать или закончить процесс вычисления ср. кв. значения представляется довольно громоздким.

В данной работе предлагается метод преодоления этого недостатка, а также вычисление интеграла с большей точностью, что позволяет снизить число точек выборки до минимума.

Особенности аналоговой части измерителя

На рис. 2 показано ядро схемы предварительной аналоговой обработки сигнала.

Сигнал поступает через конденсатор C1 на усилитель-формирователь, собранный на операционном усилителе DA1. Сигнал переменного напряжения замешивается на неинвертирующем входе усилителя с половиной опорного напряжения, которое используется в АЦП. Напряжение выбрано 2.048 В, поскольку в компактных устройствах часто используется напряжение питания +3.6 В и менее. В иных случаях удобно использовать 4.048 В, как в .

С выхода усилителя-формирователя через интегрирующую цепочку R3-C2 сигнал поступает на вход АЦП, который служит для измерения постоянной составляющей сигнала (U0). C усилителя-формирователя сигнал U’ - это измеряемый сигнал, сдвинутый на половину опорного напряжения. Таким образом, чтобы получить переменную составляющую, достаточно вычислить разность U’-U0.
Сигнал U0 используется также в качестве опорного для компаратора DA2. При переходе U’ через значение U0 компаратор вырабатывает перепад, который используется для формирования процедуры прерывания для сбора измерительных отсчётов.

Важно, что во многие современные микроконтроллеры встроены как операционные усилители, так и компараторы, не упоминая АЦП.

Базовый алгоритм

На рис. 3 дан базовый алгоритм для случая измерения величины переменного напряжения с основной частотой 50 Гц.


Запуск измерения может осуществляться по любому внешнему событию вплоть до кнопки, нажимаемой вручную.

После запуска в первую очередь измеряется постоянная составляющая во входном сигнале АЦП, а затем контроллер переходит в ожидание положительного перепада на выходе компаратора. Как только прерывание по перепаду наступает, контроллер делает выборку из 20 точек с временным шагом, соответствующим 1/20 квазипериода.

В алгоритме написано X мс, поскольку низкобюджетный контроллер имеет собственное время задержки. Чтобы измерение происходило в правильные моменты времени, необхоимо учитывать эту задержку. Поэтому реальная задержка будет меньше 1 мс.

В данном примере задержка соответствует измерениям квазисинусоид в диапазоне 50 Гц, но может быть любой в зависимости от квазипериода измеряемого сигнала в пределах быстродействия конкретного контроллера.

При измерениях ср.кв. значения напряжения произвольного квазипериодического сигнала, если априори неизвестно, что это за сигнал, целесообразно измерить его период, используя встроенный в контроллер таймер и тот же выход компаратора. И уже на основании этого замера устанавливать задержку при осуществлении выборки.

Вычисление среднеквадратичного значения

После того, как АЦП создал выборку, имеем массив значений U"[i], всего 21 значение, включая значение U0. Теперь, если применить формулу Симпсона (точнее, Котеса) для численного интергрирования, как наиболее точную для данного применения, то получим следующее выражение:

где h - шаг измерения, а нулевой компонент формулы отсутствует, поскольку он равег 0 по определению.

В результате вычисления мы получим значение интеграла в чистом виде в формате отсчётов АЦП. Для перевода в реальные значения полученное значение нужно промасштабировать с учётом величины опорного напряжения и поделить на интервал времени интегрирования.

где Uоп - опорное напряжение АЦП.

Если всё пересчитать в мВ, K приблизительно равняется просто 2. Масштабный коэффициент относится к разностям в квадратных скобках. После пересчёта и вычисления S делим на интервал измерения. С учётом множителя h фактически получаем деление на целое число вместо умножения на h с последующим делением на интервал времени измерения.

И в финале извлекаем квадратный корень.

И вот тут самое интересное и сложное наступает. Можно, разумеется, использовать плавающую точку для вычислений, поскольку язык C это допускает даже для 8-битных контроллеров, и производить вычисления непосредственно по приведённым формулам. Однако скорость расчёта упадёт существенно. Также можно выйти за пределы весьма небольшого ОЗУ микроконтроллера.

Чтобы такого не было, нужно, как верно указано в , использовать фиксированную точку и оперировать максимум 16-битными словами.

Автору эту проблему удалось решить и измерять напряжение с погрешностью Uоп/1024, т.е. для приведённого примера с точностью 2 мВ при общем диапазоне измерения ±500 мВ при напряжении питания +3.3 В, что достаточно для многих задач мониторинга процессов.

Программная хитрость состоит в том, чтобы все процессы деления, по возможности, делать до процессов умножения или возведения в степень, чтобы промежуточный результат операций не превышал 65535 (или 32768 для действий со знаком).

Конкретное программное решение выходит за рамки данной статьи.

Заключение

В данной статье рассмотрены особенности измерения среднеквадратичных значений напряжения с помощью 8-битных микроконтроллеров, показан вариант схемной реализации и основной алгоритм получения отсчётов квантования реального квазисинусоидального сигнала.

Мультиметры китайской компании Victor в настоящее время очень часто можно встретить на китайских интернет площадках AliExpress, Banggood, да и не мало их у российских дистрибьюторах. Что же из себя представляют бюджетные мультиметры данной китайской компании? Сегодня у нас на обзоре мультиметр Victor VC890D с функцией True RMS. Слово True RMS тут упомянуто не зря, т.к. есть точно такой же мультиметр Victor VC890D, но без True RMS, имеющий несколько другой внешний вид и характеристики, а также несколько диапазонов измерения емкости конденсаторов. В данном мультиметре только один диапазон: 2000 мкФ. Да и построены они на совсем разных чипах.

Есть еще модель Victor VC890C+ , отличается только возможностью измерения температуры и наличием термопары в комплекте. Во всем остальном абсолютно идентичные приборы.

Средняя стоимость мультиметра на AliExpress составляет около 25$ .

Итак, мультиметр был заказан на AliExpress, пришел он без коробки, просто завернутый в несколько слоев пузырчатой пленки. Комплектацию вы можете видеть ниже:

Здесь мы видим сам мультиметр, щупы, инструкцию на китайском, а также бумажку с штампом контроля.

Характеристики Victor VC890D:

  • TrueRMS (измерение сигнала произвольной формы)
  • Базовая погрешность ± 0,5% (DCV)
  • Измерение постоянного напряжения до 1000 В (± 0.5%)
  • Измерение переменного напряжения до 750 В (± 0.8%)
  • Пост./перем. ток до 20А (± 1.5%)
  • Измерение сопротивления до 20 МОм (± 0.8%)
  • Измерение ёмкости до 2000 мкФ (± 2.5%)
  • Прозвонка цепи
  • Тест диодов
  • Измерение коэффициента усиления транзисторов
  • Функциональность: 3 изм./сек
  • Автоудержание показаний
  • Автовыключение питания
  • ЖК-дисплей 4 разряда с подсветкой
  • Питание 9 В (крона)
  • Размеры: 186 × 87 × 47 мм
  • Масса с батарейкой: 364г с кожухом, 280г без кожуха

Мультиметр имеет съемный силиконовый чехол. Имеется подставка. С торца имеется голографическая наклейка, надпись Victor на свету также переливается, это хорошо видно на самой первой фотографии.

При включении питания на дисплее отображаются все возможные символы, а также мультиметр издает короткий звуковой сигнал. Справа от кнопки Hold (она же включение подсветки путем длительного нажатия), находится красный светодиод. При переключении между режимами издается звуковой сигнал, а также вспыхивает красный светодиод.

Щупы самые обычные, измеренное сопротивление на настольном мультиметре ~ 0.1 Ом.

В силиконом чехле имеются держатели под щупы.

Под щупы предусмотрено 4 гнезда - 2 стандартные и 2 гнезда для измерения тока. Первое гнездо до 200 мА, второе для токов до 20 А, оба с соответствующими предохранителями, доступ к которым осуществляется через батарейный отсек.

Для чего нужен TrueRMS?

TrueRMS это "истинное среднеквадратичное значение". Т.е. TrueRMS относится к измерению значений переменного тока и напряжения. В настоящее время нас все больше окружают бытовые приборы с несинусоидальным потреблением тока и вносящие искажения: компьютеры, UPS, частотники или тот же ШИМ. К примеру при измерении потребления тока ШИМ значения могут завышаться, а скажем при использовании однофазного диодного выпрямителя занижаться. К примеру может возникнуть ситуация, что вы замерили потребление тока 7А, а у вас выбивает постоянно автомат или сгорает предохранитель на 10А. Вот здесь и может пригодится мультиметр с функцией TrueRMS, который может определить реальное эффективное значение переменного тока в не зависимости от его формы.

Измерения

Предлагаю провести измерения и посмотреть насколько точно и быстро прибор работает в разных режимах. Быстроту реакции вы можете посмотреть в видео.

Начнем с измерения сопротивления высокоточных резисторов 0.01% фирм TDK и Vishay. Щупы поменяем на чуть более качественные и с более низким сопротивлением, чтобы снизить влияние их внутреннего сопротивления. Можно было бы и с родными, но все равно многие радиолюбители в дальнейшем меняют их на более качественные или в следствии быстрого износа.

Мультиметр дает точные показания спустя некоторое время (на видео это хорошо видно) . А т.к. при измерении обе руки заняты, а фотоаппарат делал снимки с задержкой спуска, то значения сопротивлений на некоторых кадрах получились не установившимися. Но все равно, в большинстве случаев показания сопротивлений несколько завышены, хотя все в пределах заявленной погрешности измерений.

Давайте проверим насколько точно мультиметр измеряет постоянное напряжение. Для этого возьмем ИОН на микросхеме AD588BQ, температурный дрейф у которой не превышает 1.5 ppm/°C, с выходным напряжением 5В и 10В. А если быть точнее то 5.00031В и 10.00027В (измерено при помощи мультиметра Agilent 34401A).

Для измерения переменного напряжения был использован инвертер 12/220, выдающий чистую синусоиду. Как видим, показания довольно таки точны.

Измерение коэффициента усиления транзисторов hFE:

Подсветка дисплея автоматически выключается примерно через 15 секунд после длительного удержания кнопки Hold.

В режиме измерения диодов показывается напряжения на разомкнутых щупах. Как видим оно составляет около 1.6 Вольта (во многих спецификациях для этой модели указывается неверное напряжение 3В). Поэтому светодиоды проверить им нельзя, т.к. для их проверки нужно большее напряжение.

Прозвонка диода 1N4007. Отображается прямое падение напряжение на диоде.

Как видим, оно составляет 0.565 Вольт.

Для измерения емкости конденсаторов в данной модели предусмотрен только один диапазон - 2000 мкФ. Прибор, в зависимости от измеренной емкости показывает размерность: микро или нано, т.е. по сути автоматический выбор диапазона. Минимальная размерность: 0.001 нФ, т.е. 1 пФ.

Электролит 100 мкФ.

Точные измерения - трудная задача, стоящая перед технологами современных производств и различных организаций. В нашу повседневную жизнь все больше и больше входят персональные компьютеры, приводы с регулируемой скоростью и другое оборудование, которое потребляет ток в виде кратковременных импульсов, а не на постоянном уровне. Такое оборудование может вызвать, по меньшей мере, неадекватные показания обычных измерителей с усредненными показаниями. Если у Вас когда-нибудь без видимой причины сгорал предохранитель, то такой причиной вполне мог быть измерительный прибор.

Измерители с усредненными показаниями
Говоря о значениях переменного тока, мы обычно имеем в виду среднюю эффективную выделяемую теплоту или среднеквадратическое (RMS) значение тока. Данное значение эквивалентно значению постоянного тока, действие которого вызвало бы такой же тепловой эффект, что и действие измеряемого переменного тока. Самый распространенный способ измерения такого среднеквадратического значения тока при помощи измерительного прибора заключается в выпрямлении переменного тока, определении среднего значения выпрямленного сигнала и умножении результата на коэффициент 1,1. Данный коэффициент учитывает постоянную величину, равную соотношению между средним и среднеквадратическим значениями идеальной синусоиды. Однако, при отклонении синусоидальной кривой от идеальной формы данный коэффициент перестает действовать. По этой причине измерители с усредненными показаниями зачастую дают неверные результаты при измерении токов в современных силовых сетях.

Линейные и нелинейные нагрузки
Линейные нагрузки, в состав которых входят только резисторы, катушки и конденсаторы, характеризуются синусоидальной кривой тока, поэтому при измерении их параметров проблем не возникает. Однако в случае нелинейных нагрузок, таких как приводы с регулируемой частотой и источники питания для офисного оборудования, имеют место искаженные токовые кривые. Измерение среднеквадратического значения токов по таким искаженным кривым с использованием измерителей с усредненными показаниями может дать 50% занижение истинных результатов, после чего Вы будете удивляться, почему Ваш 14-амперный предохранитель регулярно сгорает, хотя по показаниям Вашего амперметра ток составляет всего лишь 10 А.

Приборы True RMS (с истинно среднеквадратическими показаниями)
Для измерения тока с такими искаженными кривыми необходимо при помощи анализатора кривой сигнала проверить форму синусоиды, после чего использовать измеритель с усреднением показаний только в том случае, если кривая окажется действительно идеальной синусоидой. Или же можно постоянно использовать измеритель с истинно среднеквадратическими показаниями и не проверять параметры кривой. Современные измерители подобного типа используют усовершенствованные технологии измерения, позволяющие определить реальные эффективные значения переменного тока вне зависимости оттого, является ли токовая кривая идеальной синусоидой или искажена. Единственное ограничение -чтобы кривая находилась в пределах коэффициента амплитуды и допустимого диапазона измерения используемого прибора
.
Измерения напряжения
Все то, что касается измерения токов в современных силовых цепях, также верно и для измерения напряжений в большинстве случаев промышленного оборудования и электронных приборов. Часто кривые напряжения также не являются идеальными синусоидами, в результате чего измерители с усреднением показаний дают неверные результаты. Поэтому для измерения напряжения также рекомендуется использовать измерители типа True-RMS.


Тип измерителя

Принцип измерения

Измерение
синусоиды
Измерение прямоуг. сигнала
Измерение искажённого сигн.
С усреднением показаний Умножение среднего выпрямленного знач. на 1.1 Истинное 10% завышение Завышение до 50%
С истинно среднеквадратическими показаниями Расчет величины теплового эффекта по среднестатическому значению Истинное Истинное Истинное

Точные измерения - трудная задача, стоящая перед технологами и специалистами по обслуживанию современных производств и оборудования различных организаций. В нашу повседневную жизнь все больше и больше входят персональные компьютеры, приводы с регулируемой скоростью и другое оборудование, имеющее несинусоидальные характеристики потребляемого тока и рабочего напряжения (в виде кратковременных импульсов, с искажениями и т.п.). Такое оборудование может вызвать неадекватные показания обычных измерителей с усреднением показаний (вычисляющих среднеквадратическое значение).

Почему следует выбирать приборы класса True-RMS?

Говоря о значениях переменного тока, мы обычно имеем в виду среднюю эффективную выделяемую теплоту или среднеквадратическое (RMS) значение тока. Данное значение эквивалентно значению постоянного тока, действие которого вызвало бы такой же тепловой эффект, что и действие измеряемого переменного тока, и вычисляется по следующей формуле:

.

Самый распространенный способ измерения такого среднеквадратического значения тока при помощи измерительного прибора заключается в выпрямлении переменного тока, определении среднего значения выпрямленного сигнала и умножении результата на коэффициент 1,1 (соотношение между средним и среднеквадратическим значениями идеальной синусоиды).

Однако, при отклонении синусоидальной кривой от идеальной формы данный коэффициент перестает действовать. По этой причине измерители с усреднением показаний зачастую дают неверные результаты при измерении токов в современных силовых сетях.

Линейные и нелинейные нагрузки

Рис. 1. Кривые напряжения синусоидальной и искажённой формы.

Линейные нагрузки, в состав которых входят только резисторы, катушки и конденсаторы, характеризуются синусоидальной кривой тока, поэтому при измерении их параметров проблем не возникает. Однако в случае нелинейных нагрузок, таких как приводы с регулируемой частотой и источники питания для офисного оборудования, при наличии помех от мощных нагрузок имеют место искаженные кривые.

Рис. 2. Кривые тока и напряжения блока питания персонального компьютера.

Измерение среднеквадратического значения токов по таким искаженным кривым с использованием обычных измерителей может дать в зависимости от характера нагрузки значительное занижение истинных результатов:


Класс прибора
Тип нагрузки / формы кривой
ШИМ (меандр) однофазный диодный
выпрямитель
трёхфазный диодный
выпрямитель
RMS корректно завышение на 10% занижение на 40% занижение 5%...30%
True RMS корректно корректно корректно корректно

Поэтому у пользователей обычных приборов возникнет вопрос, почему, например, 14-амперный предохранитель регулярно перегорает, хотя по показаниям амперметра ток составляет всего лишь 10 А.

Приборы класса True RMS (с истинными среднеквадратическими показаниями)

Для измерения тока с искаженными кривыми необходимо при помощи анализатора кривой сигнала проверить форму синусоиды, после чего использовать измеритель с усреднением показаний только в том случае, если кривая окажется действительно идеальной синусоидой. Однако гораздо удобнее постоянно использовать измеритель с истинно среднеквадратическими показаниями (True RMS) и всегда быть уверенным в достоверности измерений. Современные мультиметры и токовые клещи подобного класса используют усовершенствованные технологии измерения, позволяющие определить реальные эффективные значения переменного тока вне зависимости от того, является ли токовая кривая идеальной синусоидой или искажена. Для этого применяются специальные преобразователи, обуславливающие основную разницу в стоимости с бюджетными аналогами. Единственное ограничение - кривая должна находиться в пределах допустимого диапазона измерений используемого прибора.

Все то, что касается особенностей измерения токов нелинейной нагрузки, также верно и для измерения напряжений. Кривые напряжения также зачастую не являются идеальными синусоидами, в результате чего измерители с усреднением показаний дают неверные результаты.

Исходя из описанных выше примеров, в современных высокотехнологичных электротехнических системах для измерения токов и напряжений рекомендуется применять приборы класса True RMS.

Представленный в статье ваттметр переменного тока позволяет измерять следующие параметры:
1. Действующее значение напряжения
2. Действующее значение тока
3. Активная мощность
4. Полная мощность
5. Коэффициент мощности
6. Среднюю мощность нагрузки (см. ниже)

Возможности и особенности данной реализации :
1. Измеряемый диапазон мощностей для повышения точности разбит на два диапазона, при этом переключение между ними происходит автоматически.
2. Для улучшения читабельности и упрощения снятия показаний реализованы два варианта отображения информации (на фото ниже)
3. Прибор позволяет определять выход напряжения и тока за установленные границы и управлять нагрузкой на основании этой информации.
4. Прибор также измеряет мощность за период, таким образом можно определить реальное потребление устройств с переменной мощностью (холодильник, утюг, компьютер).

Фото

Активная мощность. Ток. Напряжение.

То же и Полная мощность. Коэффициент мощности. Средняя мощность за период измерения.

Методика измерения :

Существует прекрасная статья Олега Артамонова http://www.fcenter.ru/online.shtml?articles/hardware/tower/6484

Именно в соответствии с ней (и с теорией) и построена программа.

Схема :

Построена на общедоступных компонентах и легка к повторению.

БП - любой блок питания на 5В с небольшими пульсациями.

Усилитель - LM2904 или подобный

Подстроечники Р1 и Р2 - многооборотные

Шунт Rш собран из резисторов 0,1 Ом 2Вт, соединенных параллельно. Выбирается из расчета примерно 1 резистор на 1 кВт максимальной измеряемой мощности. На плате есть место под 10шт. У меня установлено 4, примерно на 4 кВт.

ATMega8 сконфигурирована на работу от внутреннего генератора, 8МГц.

Внешний вид :

Обратите внимание на опторазвязку в левом верхнем углу.

Печатная плат а:

Обратите внимание: не все элементы печатной платы использованы. В текущей версии нет необходимости в кварце с его обвязкой, кнопке К2 (рядом с К1, не обозначена).

В правом углу размещена опторазвязка, но я рекомендую сделать ее в виде отдельного устройства. Пригодится.

Настройка и работа схемы :

Внимание: схема находится под сетевым напряжением. Прошивку МК производить при отключенном напряжении, запитывать через программатор! Выход UART подключать только через опторазвязку!

Настройка делится на два этапа.

Этап 1. Настройка точки нуля.

Зажать кнопку и включить прибор. Отпустить кнопку.

На экране появится изображение вида:

Это значения напряжения и тока по шкале 0..1023.

Слева-направо: минимум за период, максимум за период, среднее.

С помощью подстроечников Р1 и Р2 выставляем среднее в 511.

Проверяем наличие запаса сверху и снизу от минимума и максимума.

Число после # обозначает количество семплов, взятых за период. Это число должно быть несколько менее 200.

Этап 2. Калибровка.

Подключить переходник UART-USB. Например такой:

через опторазвязку. Ее плата находится в файле вместе с основной платой, на соседней вкладке.

Запустить программу-терминал на скорости 4800.
- Подключить образцовые вольтметр и амперметр и активную нагрузку, к примеру 100Вт.
- Подключить прибор к сети. Во время загрузки, на изображении "термометра" зажать К1 и не отпускать до достижения "термометром" края экрана. На экране появится надпись (setup) .
- В терминале должно появится изображение вида:

Это диалоговое окно. Сохранение нового значения осуществляется так:

(пункт) (Enter) (значение) (Enter)

Расшифровка пунктов:
1, Константа для напряжения
2. Константа для тока 1 диапазона
3. Константа для тока 2 диапазона
4. Количество периодов измерения. Влияет на частоту обновления информации.
5,6,7 Установки для управления нагрузкой (предохранитель). Выходы управления LED1, LED2.
8. Управление выводом в терминал. См. ниже.
0. Выход

Для калибровки составить пропорцию вида: Х=(записанная константа)*(образцовое напряжение)/(отображаемое напряжение)

Записать в память. При необходимости повторить.

Повторить для тока, затем поменять нагрузку для попадания во второй диапазон (скажем 1000Вт) и еще раз повторить.

Все, можно пользоваться.

Прочее :

1. В правом верхнем углу расположен индикатор. Его мигание подтверждает работоспособность устройства.

Точка внутри этого индикатора показывает включенный диапазон: меньше - 1 диапазон, больше - 2 диапазон.

2. Константа Disp, описанная во втором этапе калибровки управляет режимом вывода данных в терминал.

Disp=0 Ничего не выводится.

Disp=1 Дублирование данных дисплея в терминал:

Disp=2 Режим "осциллограф". В этом режиме сохраненные данные измерений мгновенных значений напряжения и тока выводятся в терминал, где их можно скопировать (к примеру) в Excel, проверить на адекватность, да и просто использовать для изучения формы тока и напряжения в сети. Файл-пример приложен к статье.

4. В рабочем режиме кнопка K1 переключает режимы отображения на дисплее.

Вот и все. Буду рад отзывам.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
БП Блок питания 5 вольт 1 Любой В блокнот
Переходник USB-UART 1 Необходим для калибровки В блокнот
Плата оптической развязки 1 На фото, для переходника USB-UART В блокнот
OP1, OP2 Операционный усилитель

LM2904

1 В блокнот
IC2 МК AVR 8-бит

ATmega8

1 В блокнот
LCD-дисплей HD44780 2x20 1 В блокнот
D1, D2 Выпрямительный диод

1N4007

2 В блокнот
LED1, LED2 Светодиод 2 В блокнот
C1, C2 Электролитический конденсатор 6.8 мкФ 2 В блокнот
C3 Конденсатор 100 нФ 1 В блокнот
R1 Резистор

20 кОм

1 В блокнот
R2, R5, R8 Резистор

10 кОм

3 В блокнот
R3, R6, R10, R13, R14 Резистор

1 кОм

5 В блокнот
R4 Резистор

470 кОм

1 В блокнот
R7 Резистор

0.1 Ом 2 Вт

10 Rш, соединены параллельно, подобрать колличество В блокнот
R9, R12 Резистор

680 Ом

2 В блокнот
R11 Резистор

330 кОм

1 В блокнот
P1 Подстроечный резистор 330 кОм 1 Многооборотный В блокнот
P2 Подстроечный резистор 1.5 кОм 1 Многооборотный